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ABSTRACT

SMITE is a novel computer architecture implementins a new security policy
model. It is proposed as the best available technology which may be used to
develop information systems for operational use where high assurance of
complex confidentialty and integrity based security policies is required.

This report records the results of work carried out by Retix Systems for CCt
division RSRE. This contract provided a peer review of their architecture
proposals, characterised the essential architectural elements and formulated
the security oriented top level model. In this way it provided a baseline
definition of SMITE to aid the future way forward for the project.
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1. INTRODUCTION

Project Background

SMITE has resulted from a programme of research by RSRE into Multi-Level
Computer Security the origins of which can be traced to work begun over a
decade ago. At an early stage of this effort RSRE issued a contract for a
study to produce recommendations for the best use of effort towards widening
the knowledge of the issues and requirements for computer security in the UK.
This contract, awarded to Plessey, resulted in a comprehensive report on
computer security in computer networks [AndrewsB 1.

The Plessey report recognised that the then current RSRE projects formed a
low-level application of existing techniques to existing problems and thus
formed an approach which we might with hindsight characterise as a "nuts and
bolts" approach. As a way forward the report recommended the immediate
deployment of effort to produce a "mid-range" Trusted Computing Base (TCB)
system for limited functionality network devices that would be required in the
near future. In the background a longer term research effort should be
mounted to produce highly secure general purpose computer systems.

The report identified three phases for this Secure Communications Processor
research programme [BarnesBES]. SCPI was a collective term for the then
extant approaches, SCPZ was the development of the mid-range TCB based on
current hardware and software developments, and finally SCP3, the general
purpose computer system, for which specialised hardware and software
techniques would be applied.

SMITE is in fact the name of the third phase, SCP3, project [isemanSEa,
Wiseman8Bb). The name has been changed in recognition of the fact that SMITE
is a general purpose computer system and is not limited to network component
functionality as the term SCP3 might imply.

Technical Background

The SMITE proposals for secure system development have been influenced from
a number of sources which will be referenced throughout this document.

Our modelling approach is basically that expounded in the seminal "Mathematical
Foundations" paper of Bell-LaPadula [Bel173a) in that it uses state machine
concepts, however our model, the notions of confidentiality, the axioms, and
techniques used are profoundly different form those found in the later papers
[Bell73b,Bell74 and Bel1763. Our approach has been influenced from a number
of sources such as Bell-LaPadula, McLean [McLeanB71 and various information
flow techniques such as Non-Interference [Goguen82J and Separability
[Rushb,Bl J.

Our approach to policy issues has been profoundly influenced by the many
useful discussions and workshops which arose from the Clark-Wilson paper, "A
Comparison of Commercial and Military Security Policies" [ClarkB?). Briefly,
the concept of the requirement for consistency between the internal system
state and the external environment, presented in their model as the Separation
of Duty concept, is taken to be the fundamental security mechanism of not only
integrity but confidentiality and assurance in general.

The architecture and software development approach proposed is a direct
development of work by RSRE's CCZ division. [FosterBZa, FosterB2b, FosterB3,
CurrieB2, CurrieBS, Foster89)I.L
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The existence of a team with the experience and inspiration to draw these many
disparate elements together into the SMITE proposals is entirely due to the
foresight and perseverance of RSRE's CCl division in maintaining the SCP
research programme, which has produced convincing demonstrations of research
results such as SCPZ and OSS.

History of this Document

This report is an improved presentation of the work reported in the Retix
Systems Final Technical Report [TerryBS] and the 1989 Security and Privacy
Symposium paper (Terry-Wiseman89].

The symposium paper was generated against tight deadlines to report the very
latest developments in the SMITE approach to policy modelling. Because of this
the formal description of the model was not as carefully peer-reviewed as
would normally be desirable and contains a number of detailed, technical flaws
and one or two editorial mistakes.

Most of these resulted from attempts to address some of the concerns of the
paper's referees by the introduction of some "stylistic improvements" which on
closer examination are wrong. Having met the paper submission deadlines the
problem has been compounded by the fact that the technical report, upon which
the paper was originally based, was simply brought into line with the erroneous
paper in the closing stages of the contract.

This report superceeds both the above references and has been produced after
sober reflection of the previous formal models and is now believed to be
definitive.

Structure of this Document

Section 2, Overview, is a fairly expansive, informal presentation of the overall
SMITE approach to security. It develops concepts of security from scratch and
relates these concepts to existing work and practice in an entirely informal
manner.

Section 3, Security Policy Model, presents the formal policy model and axioms
which capture the concepts developed in the Overview. The basic execution
nature of the model is shown to consist of a small number of basic transitions
which can be embodied in a small number of transition rules. Although the model
elements and transitions are quite simple it is shown that it is sufficient to
model complex application and general purpose computer systems. Finally this
section proves that the axioms of the model capture the confidentiality notions
of security by means of a non-interference proof of the model.

Section 4, The SMITE Architecture, describes the underlying architectural
features which are required to implement the policy model. It then goes on to
describe the intended architecture for use in the SMITE project and describes
the correspondence between the architecture and the policy model in an
informal manner. In an operational development the correspondence would be
formally demonstrated by continuing the refinement of the model to design, to
implementation.
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2. OVERVIEW

SMITE is an approach to producing secure information systems. This leads us to
ask what is security? A standard dictionary definition is as follows.

security n. 1 the state of beinS secure. 2 assured freedom from poverty or
want.... Archaic carelessness or overconfidence

secure adj. 1 free from danser, damage etc. 2 free from fear, care
etc ..... Archaic careless or overconfident. [From Latin securus free from
care, trom se- without + cure, care I

This gives us the typical manufacturers view of a customer definition of
security, "I want a system that I don't care about because I am assired that
it is free from all the etc's which might assail me in the future but which I
can't enumerate at the moment". The archaic definitions of carelessness and
overconfidence seem to shout out from the past the dire consequences of such
an approach and echo the concerns of the modern prophets of doom, "No
security is better than illusory security".

A sophisticated view of security in these terms can however be described as
assurance of freedom from fear of specified attacks against specified
elements of a system. To define security in these terms is a tripartite affair,

i. specify which properties of which elements of the system are
important,

ii. specify what protection from which attacks a threat analysis
requires,

iii. specify how much assurance is required that such defences are
successful.

Taken in its general English sense this definition of security is not at odds with
either military or commercial security practice.

Military Security

The military and government arena has in the past taken a more definitive
approach to security and attempted to codify and lay down standards for
secure systems. An impartial view of these attempts shows that quite naturally
they have emphasised a particular property, confidentiality, as paramount to
security.
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In codifying these concepts the military have produced many formal definitions,
or models, of confidentiality. A dictionary analysis of this term will suffice for
our discussions here and is as follows.

Confidential adj. 1 spoken,written, or given in confidence; secret; private.
Z entrusted with anothers confidence or secret affairs.

Confidence n. 1 feeling of trust in a person or thins ....... 4 something
confided or entrusted. S in confidence as a secret.

Secret adj. 1 kept hidden or separate from the knowledge of others. 4
able or tending to keep things private or to oneself.

private adj. 1 not widely known; confidential; secret. [from Latin privatus

belonging to one individual]

Confidentiality from the above seems to be about knowledge of things and its
distribution amongst individuals.

The aspect of confidentiality that things are kept secret or private is an easily
stated and implemented requirement for the discrete identification of things and
ensuring that they are attributed to only one individual, an isolation policy.

policy n. 1 a plan of action adopted or pursued by an individual,
government, party, business, etc.

The assurance of such a policy can be very high because it is basically saying
that if you want something done in such a way that no one else knows about it -
do it yourself.

The notion that distribution of things arnonst individuals is allowed "in
confidence" in the definition recognises that in reality this isolation policy is
not practical and that one is forced to delegate tasks. This problem of
delegating or sharing a task with others leads to a quite natural extension of
isolation policy as follows. If things are isolated and are secret, that is
private, known only to one individual, then if an individual can establish a basis
of trust in another individual he may pass knowledge of a secret thing to that
other individual.

In this light a generic confidentiality policy requires that things are isolated
and attributable to individuals, lays down the means by which a basis of trust in
individuals is established, ie that they don't pass on or leak secrets given to
them, and requires that things are not delegated to multiple individuals other
then as permitted by properly established trust.

Commercial Security

Some have argued that impartial analysis of commerical security shows it to be
biased to a particular property, which is universally referred to as
"integrity".

interity n. 1 adherence to moral principles; honesty. 2 the quality of
being unimpaired; soundness. 3 unity; wholeness(see INTEGER) .

honest adj. 1 not given to lying, cheating, stealing etc. ; trustworthy.

sound2 adj. 1 free from damage, injury, decay etc ...... S valid, logical

or justifiable.
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This word and its definition is fraught with overloaded technical definitions and
empirical uses and at this point we unavoidable run up against the problem of
pre-conceived notions and ideas of "integrity". In order to "smooth the way"
for the later expositions of the concept in our model we will digress for a
moment here and discuss these notions.

We believe that the security community has, and confuses, two interpretations
of the term integrity which correspond to the first and second facets of the
dictionary definition. The dichotomy of abuse and confusion which arises from
this fact can be seen by following the example of the classification and
downgrading of documents.

"Obviously, a system of controls on the handling of documents which
is driven by the labels on those documents is dependent on the
integrity of those labels".

"When a document is downgraded the process responsible for that
action must function with high integrity to prevent mishap".

In the former use the emphasis is clearly on simple correctness.

correct ... adi. S. free from error; true; accurate

When documents are merged or quoted the label on the new document must be
correctly computed from the original labels. This is sufficient in this context
because even if it is not the done thing to put the war plans in an office party
invitation the intenrity of the resultant label will ensure the confidentiality of
the war plans in that most invitations will be prevented from distribution to
their intended recipients.

In the latter use it is clearly not sufficient and connotations of "the done
thing" are clearly required. The weeding and downgrading process of the "30
year rule" is clearly correct to change any classification label to unclassified
but only for appropriate documents, more than 30 year old cabinet papers and
not 20 year old papers or seventy year old papers relating to the monarch
which should be subject to the 100 year rule.

To distinguish these uses we reserve the term integrity for the former,

correctness oriented, aspects and use "appropriateness" for the latter.

appropriate adj. 1. right or suitable;fitting. [... see PROPER)

proper adj. 1. appropriate or suited for some purpose.
Z. correct in behaviour or conduct.
3. excessively correct in conduct; vigorously moral

Thus integrity is taken by us to imply connotations of the property of a thing or
state; that it is correct. Appropriateness implies connotations of the property
of active behaviour, transitions or functions etc; that it is the right thing to
do. The contrast between these two notions in terms of state property versus a
transition property is very instructive especially in the rontext of disentangling
confusion which arises over "integrity" models such as [Biba77], [ShockleyB?]
and [LeeBBI.
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In a state marhine environment there is an inevitable interdependence of state
properties on transition properties. Thus if we consider the integrity, in the
sense of correctness, of a state, for example all objects are labelled, there
is a consequent requirement for a property of transitions that they uphold the
state integrity in the the subsequent state, for example when an object is
created it is indeed labelled. This transition property is not the set of
properties which we regerd as being the "appropriateness" properties of the
transition, they are merely a low-level adjunct to the basic state property.

Continuing the example, what we would regard as an "appropriateness" property
would be the fact that the particular label for the new object is the "proper"
one given the circumstances of the objects creation. Thus an untrusted user
creating the object would require that the label of the new object dominates
any information potentially incorporated in it by the user, as reflected by the
users current security level, whereas a trusted subject may have free reign
(in typical Bell-LaPadula parlance).

We believe that the integrity models cited above are essentially integrity in the
sense of preservation of the correctness of the state which can be extended to
provide strictly limited control in the sense of restricting users to
.,appropriate" actions. They are limited in the sense that the
"appropriateness" must be expressible in simple state relationships such as
the object creation example above. This can be seen in the way that both
[ShockleyB7) and [LeeB8) (which are applications of the category aspects of
[Biba77J) must first precisely constrain the domain of control which they will
attempt to enforce and then provide carefully calculated distributions of
categories with "conventional" interpretations which enable the simple Biba
controls to "enforce" the required behaviour.

In contrast [ClarkS?] attempts to express the problems of the full generality
of appropriateness, expressed in their model as Separation of Duty on
well-formed transactions. We believe their model should be viewed as a means
of expressing the notion and not as a model of execution which attempts to
provide the generic controls which actually address the problem.

Having high-lighted the problems with the loose use of the word integrity we will
now return from our digression and continue with the development of our security
concepts. In this we will continue to use the word integrity in the usual way and
will only return to the ramifications of the above distinctions when we arrive at
the detailed exposition.

Integrity in this loose sense can be expressed as the desire that at the end of
the day the thing is done right. As with the simple secrecy or privacy notion of
confidentiality addressing this simple requirement can again be fulfilled with
high assurance by a policy of "do it yourself if you want it done right". In the
same way therefore it is not suprising that in reality this is not practical and
we require a basis of trust for delegating tasks.

Therefore a generic integrity policy requires that things ere discretely
identifiable and attributed to an individual, lays down a basis for establishing
trust in individuals, ie they don't damage, render invalid, etc information given
to them, and requires that things are not delegated to multiple individuals
other than as permitted by properly established trust.

Estmblishing Trust In Individuals

Thus for both confidentiality and integrity, once we are beyond the "do it
yourself" syndrome, we are therefore concerned with establishing trust in
individuals.
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To understand all the paraphenalia of Trustworthy Computer bases, security
policies, etc and their relationships to this simple concept of trust in
individuals we must return to basic simple definitions and concepts.

The requirement for security policies, either military confidentiality based or
commercial integrity based, springs from the real world requirement for
delegation of tasks to others while wishing to retain responsibility for those
tasks.

"I am responsible to the nation for ensuring its security" or "I am responsible
to the shareholders for ensuring the profitability of the company" are duties
and responsibilities found in the real world of supreme commanders and company
directors. In both cases the tasks involved are of such magnitude that
obviously whole armies or staffs are employed each member of which having an
individual task which are collectively organised to fulfill their leaders
declared aim. However, failure of all or part of this collective organisation
such that the goal is not achieved results in the demise of the company
director or commander and not the court martialling of squaddies or the sacking
of the teaboy.

This property of delegation, that responsibility is retained while control is
lost. gives rise to the requirement from the delegator that he attains some
assurance, guarantee, faith etc that the system instigated by him will not fail
due to anothers malicious or negligent actions.

Obviously, this assurance can never be absolute for the following fundamental
reason, fallible humans are involved. Ultimately even if the delegator did do
the task himself it might still be incorrect. Even if the instigated system
contains an element of automation which attempts to constrain human users by
enforcement of policy, computers and their programs are built a.nd written by
delegated human beings thus moving and not solving the problem.

Given an absence of absolutes what are acceptable relative assurances7

Studying existing techniques leads us to state that the fundamental aspect of
all security is the notion of Separation of Duty. Many example of this can be
f ound.

On the grand scale concepts such as accreditation and certification of computer
systems stress the importance of the "independence" of the evaluator. On the
small scale formal specifications of systems are required so that the "proof
of refinement" or mapping functions between orthoganal representations of a
system can be carried out according to the "independent" "widely accepted"
techniques of mathematics.

We claim that this technique is even the basis of the military models which are
often presented as "absolute" definitions of security. We make this claim
because in practice such systems .re ultimately dependent on the correct
assignment of "clearances" and "classifications" to individuals and data. For
the former this is carried out by specialised security staffs and is once again
separation of duty. For the latter users are commonly "trusted" to correctly
assign initial classifications, a total breakdown of separation of duty, or in
very high security applications are assumed to generate data at their
"clearance" level and is later assigned "appropriate" classifications by
reviewers, a clear example of separation of duty.
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In all these cases the scheme is the same. The delegator cannot be a
sufficient expert in all of the minutiae areas which result from delegating to
assure himself that he is safe to delegate. So instead he organises the
process of delegation itself in a manner which exploits aspects of human nature
such that the delegator indirectly gains confidenre -n the final system from
the inbuilt checks and balances introduced in its development and operation. The
aspect which is exploited is the conflicting motivation of individual humans. Thus
trie delegator issues a contract to develop a system and a contract to evaluate
the system. By ensuring that the contracts are carried out by groups with no
common interest and Encouraging a degree of competition between developer and
evaluarnr the delegator is happy that the system is "safe".

This practice exists within the operation of the final system of subtasks.

If invariant procedural aspects of the system provide no discretion to the
human users the developer of the system is effectively in control and thus
control has only been delegated as far as the developer and not to the end
users. The whole purpose of delegation is to utilise the expertise of others who
must therefore be left some discretion in their activities within the system.

However, in order to ensure that users do not use this discretion to undesirable
ends the system developer must arrange that the system operates in a manner
which enforces the notion of separation of duty. First, users exercise their
discretion only by means of choice of one of a number of invariant procedural
aspects of the system. Second, important operations of the system are
arranged as a sequence of selected invariant procedures. Finally, the system
is organised such that the choice at key points within the sequence of
procedures is exercised by different users.

However, the underlying assumption which gives us assurance of this approach is
not simply that different users are involved but that their motivations are
sufficeintly divergent that mistakes and/or fraudulent actions do not occur.
The normal military and government practices of "vetting" users is precisely
this task of establishing an individuals motivation.

Individuals "Motivation"

For commercial or government sensitive but unclassified arenas a notion of
security enforcement based on individual background checks to establish an
individuals motivation may be considered unacceptable because of concerns for
individual privacy and civil rights issues. Clark-Wilson have shown however that
in the commercial sector this same goal is achieved in practice without
background checks because of implicit assumptions which can be formed about an
individuals "motivation".

The example that springs to mind is that a highly paid, career oriented manager
of a Bank is unlikely to collude with lowly paid counter clerks in a petty fraud.
Thus if transactions by the clerks require a final counter signature by the
manager, who is known to make random spot checks on the veracity of the
transactions, fraud by counter clerks is inhibited. Major fraud by the manager
alone is prevented by the Bank organisation which does not allow highly placed
individuals to carry out the basic transactions, only to countersign and check
them. Major fraud by the manager in collusion with his staff is also prohibited
by the paradoxical motivation of the clerks not to cooperate, "The big fish
never go to prison, its always the little guy who carries the can".



Total Security

This notion of separation of duties amongst individuals who, by background
check, assumptions about motivations, or some combination of the two, can be
assured of carrying out a task without collusion to violate policy is only
applicable to ensuring the integrity of tasks. Confidentiality cannot be ensured
by this means. For confidentiality it only takes one subversive or accidental
action by one individual to disclose a secret thus the more indlviduals that
acquire knowledge of it the greater the chance of disclosure. Conversely for
integrity, individuals able to complete the whole task may be subverted or
careless thus by ensuring that many individuals must cooperate in a highly
coordinated manner the chance of undesirable results is reduced.

Because of this divergence of properties it may not seem clear how we claim
that these two aspects, confidentiality and integrity, together with assurance
are all underpinned by the single notion of separation of duty, thus allowing
them to be coordinated into a single coherent notion of security.

The answer is that it is not easy to see the relationship, and more importantly
accept the true relationship, because of the emphasis which is placed on the
ertifical distinction between commercial and military security. We say that this
is an artifical distinction because there are aspects of any commerical venture
which require confidentiality, hence "commercial-in-confidence" and "trade
secrets". Similarly, the military also require that they don't lose the war
through failure to act and function correctly in spite of foiling the enemies
spies. The obvious relationship is that the only reason for wanting a task of
information processing to be carried out, military or commercial, presupposes
that it will be done correctly, misleadingly ascribed as the only commercial
imperative, and that it is in eddition to this that we require it to be carried out
in confidence, misleadingly ascribed as the only military imperative.

This is difficult for those of a military theoretical background to accept
because of the common view that we must have confidentiality at all costs and
integrity is an optional add-on. The futility of this view in practice can easily
be shown because of inevitable requirements which arise in such military based
confidentiality secure system. In such a system if we are to avoid "doing it
ourselves" but at the same time retain assurance that confidentiality is
upheld, we are forced to implement the controls so as to make the worst case
assumption of the behaviour of individuals in terms of the sensitivity labels of
information they produce from initially labelled information. For this reason
there is a constant need to "trim" overclassified, generated information.
Additionally, if the system in its application role within an organisation is taken
into account there also arises needs to change the sensitivity labels of
information in the machine to reflect the changed perceptions of the
environment.

For these reasons there is a requirement that individuals can change the
control mechanisms that are implemented to effect controls on individuals.
There is obviously a requirement for maintaining the integrity of these controls
in the sense that an inappropriate or fraudulent change is not made. In other
words in practice integrity control is a prerequisite for implementing real world
confidentiality control.

For our notion of total security we have therefore adopted the approach of
describing security as the simple real world requirement that a job of work is 3
carried out with respect to pri-,ac,, considerations, in a correct manner, and
that it is done only if it is in some sense "appropriate". These three aspects of
security are referred to as Confidentiality, Integrity and Appropriateness.
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Our notion of confidentiality in its application to moment to moment access
control decisions within the system is unchanged from the typical current
approach of a lattice of labels and a dominates relation together with axioms
that subject and objects are labelled and information flows subject to the
dominates relation.

However, because we are combining at a more fundamental level axioms of
integrity and appropriateness, we differ from current approaches in that we do
not have further axioms requiring constraints which render the first set of
axioms in some sense watertight, absolute controls. Thus concepts such as the
changing of subjects and objects classifications are not in violation of our
concept of confidentiality requiring "trusted processes" etc but are instead
subject to constraints such as "Is it appropriate to change this subject/object
to this level" etc.

Our notion of integrity, as alluded to earlier in our digression on commercial
policies, is limited to the simple notion of the correctness of a thing in terms
of it having a valid state, together with supporting notions of the preservation
of such state properties.

Our notion of appropriateness is reserved for the "ritness of an action"
aspects of the usual notion of integrity and is expressed in terms of the wider
context of the relationship between the internal valid system state and the
external real world state as introduced by [ larkS?].

Given this intuitive background and the above restrictions in the connotations of
terms in their use for the remainder of this document we will now turn to
formalising these notions.
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3. SECURITY POLICY MODEL

A system is modelled as a set of Entities, which can be thought of as
repositories of information. It is our intention to model the behaviour of the
system and not the constraints required of an underlying protection mechanism.
For this reason we introduce a model element which corresponds to the data
that is contained within Entities. This element is the set of Attributes. The
Entity/Attribute paradigm can be used for all degrees of granularity, from an
integer value stored in a memory location to a file in a directory.

The state of the system can be fully captured by the relationship between
these Entities and Attributes.

We establish our notion of security as a property of state transitions concerning
the "flow of information". Information is modelled explicitly in the model as
the set of Attributes, representing information encoded as data. There is also
an implicit encoding of information within the structure of the model concerned
with the relationships of Entities and Attributes within 4.he state. In both cases
examination of the state before and after a transition allows us to deduce the
flow of information between Entities.

For example, consider three Entities, A, B and C, and the attributes, 6, 7 and
4Z, in the following state transition.

{ A - 6, A " 7, B '6, C '.7 } -- 1 (CA - 6, A - 7, A - 42, B - 6 C - 71

There are a number of "logical explanantions" of this event in terms of
information flow. "A" may have carried out a multiplication of its own attributes
in which case there is no information flow between entities. Or A may have
observed B and Cs attributes in a multiplication in which case information flows
from B and C to A. Or A may have observed B or Cs attribute and one of its own
in which case information flows from B or C to A. Or B may have carried out the
multiplication reading Cs attribute, its own, and placing the result directly in A
in which case information flows from B and C to A, etc,etc.

To distinguish which of these flows actually occured in the transition we require
more structure in the model.

We can be sure that A is the recipient of the explicit information flow
represented by the data attribute "42" by comparing the before and after
states. However, this does not allow us to precisely identify those entities
which were the source of this flow. The transition request must therefore
explicitly identify these entities. We give this set of entities the suggestive
name of the "observed" entities. Recognising that if something is observed
something must be doing the observing we can also suggestively name the set of
entities which are the destination of information flows the "observers".

As we are modelling a purposeful machine rather than random events of nature
we must obviously identify one or more entities as the instigators of state
transitions. Thus we model state transition "requests" which identify some
entities as the "requestors" of the state transition in addition to identifying
the "observed" entities.

Given a request, identifying "requestors" and "observed", and the before and
after states of a transition, allowing "observers" to be determined, we have
sufficient structure in the model to distinguish all possible scenario's of the
possible flows in the example and of a system in general.
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Before proceding further we will first introduce the formal machinery
necessary to discuss the details of our policy approach unambiguously using the
2 notation [SpiveyB?]. First the set of entities and attributes are parachuted
in as basic types.

[E,A]

We identify various sub-sets and members of the set of attributes for use in
expressing our notions of security. The meaning and use of these will become
apparent later.

CLASS, TRUST, ROLE : F A

dont_siqnal, faithful, creator : TRUST

The state of the machine, V, is represented by a schema. This comprises the
relation between entilies and attributes which is structured into a number of
named relations and functions, the use of which will again become clear later.

VFClass E . CLASS
Trust E . TRUST

Role E -. ROLE

Conflict E . ROLE

Other E .A

Requests, R, are modelled as a set of entities which are "observed" together
with the set of "requestors" responsible for the request.

R - _IFobserved, requestors F E
FI

The results of a request is a decision together with a possible change of state.

D e { "yes","no"

We introduce some useful operators as language extensions.

[X]

_ X .FX
_2 P X IP X

( _) : (F X X F X) -F X

U x,y F X
X Y >'-* yC x
x 2 y 00' y x
V x,y : P X • x t y = x U y \ x n y

This defines the righthand versions of the standard subset and strict subset
relations for the benefit of our type checker which only defines the lefthand
versions in its basic library. The 1 function is our definition of the standard
symmetric set difference function which is absent from our basic library.
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In defining our system we will require a number of relations and functions which
enable us to characterise state transitions in terms of the differences between
states. These language extensions are introduced in one fell-swoop and are
essentially quite trivial. If one thinks of the state as a single relation, say F,
between entities and attributes instead of the structured set of relations
actually given then the meaning of these state functions and relations is what
one would intuitively say about the domain and range of F with the standard
functions. The state relations use the same symbol as the standard relation
except they are in bold. If our type checker supported overloading of symbols
we would in fact simply do so.

First the state relations,

dam: V - P E

rn9_ :V - P
;, •_=, _v, "_, _C_, _;_ : V .V

Uu,v: V
dam v = U {dom v.Elass, dom v.Trust, dom v.Role,

dom v.Conflict, dom v.Other }
rng v = U {rng v.Class, rng v.Trust, rng v.Role,

rng v.Conflict, rng v.Other I
u 2 v 4.o (u.Class z v.Class ^ u.Trust 2 v.Trust A

u.Role 2 v.Role A u.Conflict Q v.Conflict A

u.Other ;2 v.Other)
U --- v 4. U 2 V A v 2 u

u 19 v 4-* -(u = v)

u " v 4¢m u 2 V A U 0 V
U V 4V * V "0 U

u v 4-* v 2 u
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and then the state functions.

(__ ), (_-_)3, C__) : CV v ) V
__): (P E x V) - V

uvw : V; e : F E
u n v = w 4. w.Class = u.Class n v. Class A

w.Trust = u.Trust n v.Trust A
w.Role = u.Role n v.Role A
w.Conflict = u.Conflict n v.Conflict A
w.Other = u.Other n v.Other

u - v = w - w.Class = u.Class\ v.Class A
w.Trust = u.Trust \ v.Trust A
w.Role: u.Role \ v.Role A
w.Conflict= u.Conflict \ v.Conflict A
w.Other = u.Other \ v.Other

u I v = w *- w.Class = u.Class t v.Class A
w.Trust = u.Trust t v.Trust A
w.Role = u.Role t v.Role A
w.Conflict= u.Conflict t v.Conflict A
w.Other = u.Other t v.Other

e C v = w "4 w.Class = e I v.Class A
w.Trust = e I v.Trust A
w.Role= e c v.Role A
w.Conflict = ? I v.Conflict A
w.Other = e a v.Other

State transitions are described by a schema, W, which capture the state
machine concepts of a request in a state resulting in a response and a new
state.

W

r? :R
d! :D
V, V' :
observers, modified, modified__controls, changed_controls : P E

0 c r?.requestors a r?,observed a dam v
changedcontrols = dom( v.Class T v'.Cless

U dom( v.Conflict t v'.Conflict
U dom( v.Role t v'.Role )
U dom( v.Trust t v'.Trust

observers = dom( v t v' ) U r?.requestors

modifiedcontrols = chansed-controls n dam v r) dam v'

modified = observers n dom v n dom v'

This scheme defines a number of sets of entities which %re used in the policy
ax;ams to capture our various notions of security. It is therefore very
important that one clearly understands the characteristics of each of these
sets.
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r?. requestors and rT observed

These sets are identified in a request. R, schema. However, to usefully
model reality these sets cannot simply be arbitrary and must conform to
the following minimal constraints.

0 c r?.requestors a dom v
Clearly, transitions can only occur if they are requested hence
r?.requestors must not be an empty set. Equally, a requestor
can only request a transition if it exists.

r?.observed C dam v
Similarly, an entity can only be observed in a transition if it
exists in the current state.

r?.requestors a r?.observed
Finally, because a requestor can influence the final state by
choosing whether or not to invoke a transition, there is an
implicit flow of information from requestors to observers as !
well as the explicit flow from the observed entities. We
account for this is the model by insisting that the requestors
are a subset of the observed entities.

observers = dom v (v t v' ) U r?.requestors

This set can be defined in terms of the differences between the be-Fore
and after states of the transition. The symmetric set difference
operator on states captures all notions of change in a state including
deleting and creating entities as well as the more mundane
non-destructive modification of the mapping between existing entities and
attributes. Because our model includes the notion of multiple requestors,
for n-man rules, etc, there are possible information flows between
requestors. For example, if an entity can carry out a transition on its
own but not in conjunction with some other requestor it can infer something
about the security controls of that other requestor. In order to account
for this we insist that observers includes the requestors in its definition.

modified = observers n dam v n dom v'
modified is simply observers with entities which were created or
destroyed in the transition excluded. We tend to make this distinction
because of the fundamental differences in the security properties of
creation and deletion versus modification of entities.

changed._.controls
This set is analogous to observers except that it is only considering
changes to the "control aspects" of the state and does not concern
itself with changes to "ordinary data" parts. Thus, like observers,
changed controls encompasses creation and deletion of entities.

modified-controls = changed-controls n dam v n dam v'

Again this is analogous to modified restircted to the control aspects of

the state. Thus, like modified, it is not concerned with creation and
cle]etion.

' t'
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An appearance of the state machine is defined by the sequence of states
arising from the application of a sequence of transition requests, given an
initial state and a set of rules. A system is defined by the set of appearances
from a particular initial state and set of rules.

Appearance

Zo: V
states seq V

inputs seq R
output seq D

rules P W

states 1 = z o

# states = # inputs + 1
# inputs = # output

V n .1 # • inputs
output n = "yes"

3 r : rules
r.v = states n

r.v' = states (n+1)

r.r? = inputs n

output n = "no"
-0

states n = states (n+1)

We believe that the model of execution presented above is sufficiently powerful
to describe any computer system. Thus we will use this abstraction of a
computer to address the question of what does it mean for a computer system
to be secure, without considering particular implementation mechanisms.

Confidentiality

The information that war starts tomorrow is secret. However information is
ephemeral and uncontrollable and must always be encoded in some medium, such
as soundwaves in air, characters on paper etc. An encoding such as the string
"War Starts Tomorrow" is not a secret, it is just a sequence of characters.
Hence, if we require a system which limits the possesion and distribution of
information the best approximation we can achieve is to control the distribution
and possesion of encodings of information. These controls work by denying
access on the basis of labelled containers of such encodings where the label
reflects their information content.

In the model containers are represented by entities and encodings such as
strings by attributes. However, while information should be encoded directly as
the value of an attribute, it may also be encoded indirectly in the distribution
of attributes amongst entities or in the existence of entities.

The first case is the obvious encoding of information as data, which is something
that can be controlled in terms of where it is stored. Therefore we can protect
such information in the usual way by labelling containers.
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In the second case information is encoded in a less obvious way using the
distribution of attributes rather than their values. However this is still in
terms of where attributes are stored and so can be controlled by "worst-case"
labelling of containers. However, labels are themselves attributes and
because of their interaction with the state transition rules information can be
encoded in them. In general, whenever a protection regime is introduced it
becomes possible to encode information in its mechanisms. Control of such
"signalling channels" will be discussed shortly.

The third case is where information is encoded in the existence of entities. This
signalling channel is another example of the general rule and arises because
attributes may only be accessed via entities, which is a weak protection regime.
This channel cannot of course be controlled by labelling because it is not
concerned with storing attributes in entities.

There are two possible solutions to the problems of signalling channels which
arise through encoding information in the protection regime mechanisms. One
solution is to prohibit "interference" caused by changes in such mechanisms.
The alternative is to allow this functionality and ignore the channels. Neither
of these are acceptable as system wide solutions. Prohibition cannot be used
because such encoding arises not only through illegal attempts to bypass the
security controls but also as side effects of legitimate operations. Ignoring
such channels is not viable in high security applications where such attacks
form a real threat.

Applying the two solutions selectively, according to some suitable criterion, is
therefore desirable. We choose to model this criterion as degrees of trust in
the requestors. That is trusted requestors are allowed to create and delete
entities or change entities' classifications because they do not exploit the
unavoidable signalling channels which arise as a side effect. However it is
assumed that untrusted requestors will attempt to exploit such side effects
and so are prevented from making such changes.

In summary, confidentiality is about using labels to control the flow of
information encoded in the contents of containers, and using trust to control
the flow of information encoded in the mechanisms of the protection regimes.

In order to model the basic concept of labelling containers we need to create
the usual paraphenalia of the lattice of classification labels. In the formal
model this role is served by the set of attributes CLASS and the dominates
relation, ? (or S where convenient), together with typical supporting definitions
of useful least upper bound operators etc.

GLB, LUB P CLASS - CLASS
_ :CLASS o CLASS

_S_ :CLASS . CLASS

Labelling of entities with these classifications is achieved by the partial
function "Class" element of the state.

In order to model the concept of selectively allowing access to the signalling
channels we need a notion of trust. In general an entity may be trusted
differently with respect to various aspects of the system. Therefore in the
formal model we define an attribute for each of these aspects, collectively
called TRUST, and a relation, "Trust", which ascribes appropriate trust
attributes to entities.
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For confidentiality the only aspect affected by trust is whether an entity
exploits a signalling channel. Entities which do not exploit the channel have the
dont__signal attribute.

The confidentiality control expressed in terms of the overt flow of information
between labelled containers is simply that in a transition the classification of
all modified entities dominates the classification of all observed entities.

Confident ial ityl

GLB v. Classt modified 3 2: LUB v. Class( r?.observed

This is analogous to the Bell-LaPadula *-property except that it is expressed

in terms of overt information flow in a state transition.

Some nuances of this approach are worthy of comment.

The Bell-LaPadula *-property was introduced in their modelling technique to
ensure the watertightness of their notion of security. This interpretation must
not be carried across to our model under any circumstances. This axiom is
concerned soley with the overt transfer of information amongst labelled
containers. It does not say anything about the transfer of information between
un-labelled conatiners or a mixture of labelled and un-labelled containers.

This axiom is also not concerned with the covert transfer of information due to
the creation and deletion of entites or changes in their classification.

All of these properties may appear to be "problems" in that they are counter
to ones common notion of security. However it should be noted that they are all
about the appropriateness of a transition. Therefore these aspects are dealt
with by that aspect of security, rather than by creating a raft of further
supporting confidentiality axioms.

The second component of confidentiality, that signalling paths are not used by
untrusted software, is expressed as follows.

Confident ial ityZ

(dom v' g dam v v
v.Class t v'.Class s 0 v
v.Conflict t v'.Conflict s 0)

U r : r?.requestors o dontsignal e v.Trust({r})

The first disjunct captures the signalling channel via entity creation and
deletion while the second and third capture the channels through the changing
of an entities "observe" and "modify" control attributes.

An interesting point to notice about this axiom is that it doesn't prevent
requestors from modifying their own, or other entities, trust status. As with
the first axiom this apparent problem is concerned with the appropriateness of
such a modification.
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Finally our overall definition of confidentiality is expressed thus:

Confidentiality I Confidentialityl A ConfidentialityZ

Integrity

We define the concept of integrity as a property of state; that it is "correct".
Obviously in a state machine we require all states to be correct in order that
the machine is correct overall.

In this model we have only one simple requirement for correctness, which is
that the confidentiality controls can at all times be correctly applied. This
requires the following integrity constraint on all transitions.

_Integrity- ---

FW

(observers u r?.observed) n dam v r; dam v. Class

(ob-servers U r?.observed) in dam v' r. dom v'.Class

Effectively, all transitions rules are type operators which only act on

classified entities and deliver classified entities.

Appropriateness

Appropriateness, defined in Clark-Wilson terms as that aspect of "data
integrity" related to the correspondence between the systems internal view of
the world and the true external state, is a property of a system which we
cannot enforce within the system. However, we can construct the system such
that its operation by human users, undeniably in the "real" world, will tend to
favour correspondence as opposed to deviation from the real world.

The feature of a system so constructed is its use of a technique, called by
Clark-Wilson "Separation of Duty", which exploits the conflicting motivation of
the human users. In order to capture the concept of confliciting motives users
are assigned to roles. Many users can be assigned to a role but a single user
can only have one role. This is the purpose of the attribute set ROLE and the
function "Role" in the model.

Separation of Duty is then achieved by forcing users with confliciting roles to
participate in n-man operations.

In our modelling approach a request originates from a set of requestors. Active
entities in the model represent software invoked on behalf of the human user
and endowed with the user's "authority" to carry out some task. We recognise
that not all software can be trusted not to abuse these "rights" and carry out
additional or alternative tasks which the user did not intend when invoking the
software. This is the Trojan Horse problem. In the model we ascribe the trust
attribute, "faithful", to those entities which are always faithful proxies, ie
Trojan Horse free. In the face of possible Trojan Horses, enforcing the n-man
rule cannot simply be enforced by requiring n-requestors, but instead requires
us to count only the "faithful" proxies.

To capture the conflict aspects of the n-man rule we need to restrict state
transitions to faithful requestors acting on behalf of individuals about whose
motivation some assumption of conflict can legitimately be made.
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Human intuition, which we may never be able to logically model. tells us that a
clerk or a bank manager on their own may be tempted to defraud the bank. The
n-man rule means that two clerks or two managers are less likely to collude to
defraud the bank. However, for social reasons, we ere inclined to believe that
a clerk and a manager, while still only fulfilling a two-man rule are far more
unlikely to collude. This role based control can be implemented with access
control lists. To be able to capture this degree of control in the access
control lists we need to be able to associate appropriately conflicting roles
with entities. This is the purpose of the relation "Conflict".

Our axiom for maintaining appropriateness is thus the Separation of Duty axiom.

Separation of..Duty

FW

k e : modified controls
v.Role( faithful-requestors ) v.Conflict( {e}

where
faithful_requestors { r r?.requestors

(r~faithful) e v.Trust }

This axiom applies only under two assumptions. Firstly, that only the
modification of existing entities is under consideration and, secondly, that the
initial assignment of Conflict roles to entities correctly captures truly
confliciting roles. Clearly, this is a bootstrapping problem which requires
alternative criteria for trusting the initial states "appropriateness" and, if
the creation of entities is to be modelled, trusting subsequent requestors to
correctly set up "appropriate" controls on newly created entities.

In our model, as in all modelling approaches, the appropriateness of the initjal
state cannot be defined, however, we can define a notion of trust to ensure the
appropriateness of the controls on newly created entities.

In the particular model in this paper the axiom which we formulate is that at
least one requestor is appropriately trusted to change the controls with
respect to new entities.

L dam v' \ dom v ; 0

creator e v.Trust ( r?.requestors

Thus overall we require the following axiom to ensure the appropriateness of
changes made to the system.

Appropr i ateness A Separat i onof" _Duty A TrustedCreation

Having introduced our model of execution and the notions of security which we
can express about its behaviour we now turn to a description of the state
transition rules.
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The Rules

It is our intention to describe rules in terms of a small number of broad classes
of state transitions rather than in terms of a large number of individual
transitions. We can define a class in terms of the common security constraints
shared by all transitions in that class.

State transitions are characterised by their effects on the state relations of
the before and after states. The essential model of execution is that a group
of entities, the observers and observed, are involved in a transition and that
the state relations in respect of all other uninvolved entities are unaffected
by the state transition.

The most obvious effect of a transition on a state is in terms of the gain and/or
loss of elements in the state relations. The elements lost and/or gained in a
relation can be further categorised as to whether they involve new and/or
rearranged relationships of attributes with existing entities, or whether they
involve the loss and/or gain of entities.

These threp classes of transitions, gain of entities, loss of entities and
change of attributes, are the only discriminants of the security contraints
which must be applied to a transition and do not impose any discernible
resLriction on the variF ,:, of state transitions which can be used to model real
events within these classes.

Thus these three rules are sufficient to model a real system.

The Change Attribute Rule

Change of attributes is defined as the class of transitions where the state
changes (2) in a manner which does not involve the loss and/or gain of entities
(3).

Changeqttr i bute
W

d! = "yes" (1)
V' 89 v )

dom v' = dam v (3)

(observers U r?.observed) n dam v r dom v.Class
(observers U r-observed) l dam v' r dom v'.Class
GLB v.Class( modified ) Z LUB v.Class( r?.observed ,

(v.Class t v'.Class e 0) v
(v-Conflict T v'.Conflict s 0) 4P

( U r : r?.requestors • dont_.signal e v.Trust({r}I

e : modified_controls
v.Role( faithfulrequestors ) 2 v.Conflict( {e} )

where
faithful-requestors a { r : r?.requestors I

(r-faithful) e v.Trust )

This rule upholds Confidentialityl by virtue of the predicate of the axiom being
present in the rule (5).
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The preconditions of the rule prohibit creation of entities so the first disjunct
of ConfidentialityZ is always false for this rule. However, as modif,caticn of
controls is not barred by the preconditions of this rule the second and third
Jisjuncts of ConfidentialityZ can be satisfied. Thus ConfidentialityZ can be
upheld by including the modified predicate of the axiom in the rule (S).

Integrity is upheld by virtue of tne predicate of the axiom being present in the
rule (4).

Separation of Duty is satisfied uy virtue of the predicate of thE axiom being
present in the rule (7 & 8).

For the TrustedCreation axiom the precondition of the predicate is always
false because the precondition of this rule prohibits the creation of any new
entities. Thus this rule trivially upholds the implication of that axiom.

Thus this rule upholds Confidentiality, Integrity and Appropriateness.

The Entity Gain Rule

Gain of entities is defined as the class of transitions where the changes to the
state relations involve a gain only of elements (2) and these new elements
involve no new attributes (4) and only new entities (3).

Ent ityGain

FW

d!= "yes" (1)
V' " v (2)

dam (v' v) n dom v = 0 (3)

rng v' = rng v )
(observers U r?.observed) n dam v r dom v.Class

(observers U r?.observed) n dam v' a dom v'.Class (5)
GLB v.Class( modified ) a LUB v.Class( r?.observed ) (6)

U r : r?.requestors • (7)
dont _signal e v.Trust( {r} )

dom v'\ dam v * o
creator e v.Trust r?.requestors ) (8)

This rule upholds Confidentialityl by virtue of the predicate of the axiom being
present in the rule (6).

As the preconditions of the rule always imply the first disjunct of
Confidentiality2 the condition of the predicate is included in the rule (7)
thereby satisfying Confidentiality2.

Integrity is upheld by virtue of the presence of the predicate of the axiom in
the rule (5).

The preconditions of this rule mean that no entities are modified therefore
Separation of Duty is trivially true.

The preconditions of the rule imply that TrustedCreation may apply. As the
rule includes the predicates of the axiom it trivially supports this axiom.

Thus this rule upholds Confidentiality, Integrity and Appropriateness.
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The Entity Loss Rule

Loss of entities is defined as the class of transitions where the changes to the
state relations involve a loss only of elements (2) and no loss or gain o-f
attributes (4) and the entities involved in these lost elements are absent in
the new state (3).

Ent tyLoss

W

d!= "yes" U)
v' v (2)
dom(v - v' ) n dom v' = 0 (3)

rns v' =rn v (4)

(observers U r?.observed) n dam v a dam v.Class
(observers u r?.observed) n dam v' r dom v'.Class (5)

OLB v.Class( modified ) Z LUB v.Class[ r?.observed ) (6)

r : r?.requestors . dont sisnal E v.Trust{r}) (7)

U e : modified controls
v.Role( faithful-requestors ) 2 v.Conflict( {e} ) (8)

where
faithful_requestors { r : r?.requestors I

(r.faithful) e v.Trust }-

This rule upholds Confidentialityl by virtue of the predicates of the axiom being
present in the rule (6).

As the preconditions of the rule always imply the first disjunct of
Confidentiality2 the condition of the predicate is included in the rule (7)
thereby satisfying Confidentiality2.

Integrity is upheld by virtue of the presence of the predicate of the axiom In
the rule (5).

Separation of Duty is satisfied by virtue of the predicate of the axiom being
present in the rule (B & 9).

The precondition of the TrustedCreation axiom isfalse because the precondition
of the rule prohibits the creation of any new entities. Thus this rule trivially
upholds that axiom.

Thus this rule upholds Confidentiality, Integrity and Appropriateness.

Overall Security

A secure system is defined as those appearances whose rules uphold the axioms
of confidentiality and appropriateness. We have deFined such a set of rules
above which can be summarised thus:

Rules a ChangeAttribute v EntityGain v EntityLoss
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Thus a secure system is defined as follows:

Secure Appear ances

FAppearance
0 r rules.1

r E Rules
r E Confidentiality

r___ e________________

r E Appropriateness
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BASIC SECURITY THEOREM AND PROOF

The state machine, rules and axiom set given define a secure system where
security is defined in terms of confidentiality, integrity and appropriateness.
The model serves to both define and exhibit the properties of integrity and
appropriateness so there is little we can do to assure the correctness of these
concepts other than appeal to intuition and the simplicity of the model.

However, for confidentiality there are other definitions and demonstrations of
the concept. Therefore we would like to offer the following analysis of our
model, in terms of one of these other definitions, in order to provide an
orthoganal "proof" that our axiom set for confidentiality is necessary and
sufficient.

The analysis which we will perform is a non-interference analysis.

The standard MLS policy is usually expressed in this formalism as the following
set of non-interference assertions:

( u :I v I Level(u) a Level(v) }

where u and v are members of the set of users and Level is a function which
gives the fixed security level of a user.

In the non-interference approach this notion is formalised by defining a state
machine with users, states, commands and next and out functions etc.

There are some problems with the standard notion of non-interference in
respect of our model. We work with groups of users executing commands instead
of single users thus allowing us to consider the notion of a users security level
being changed by consensus.

The original paper extolling this technique (GougenB2] claimed to work with
"dynamic polices", ie where the security level of a user was not fixed. Private
communication with Rushby indicates that all was not well with this paper and
that a lot of the ideas in it were wrong. Certainly in all non-interference work
seen since only fixed level functions users have been used. These subsequent
papers, [Gouen41], [RushbySS) [HaighS6), are significant in that they
establish the form and use of the "unwinding theorem", which is the only useful
form in which formal analysis can actually be performed.

An interference analysis of our model should show that the rules of our model
uphold non-interference between entities as in any other T1LS policy except
where explicitly excepted by the dontsignal trust mechanism.

I will repeat the basis of [RushbyBSJ in terms of our model as follows.

A machine M1 is composed of
e m set V of states with an initial state v6 a V,

e a set E of entities

* a set C of transition rules
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together with the state transiton function next and output function out:

* next : V x (P E x C) -. V

*out : Vx (PExC) -. D

where P E x C corresponds to our normal request, R, notation. Throughout this
section we will use the R notation for convenience and to more easily relate to
the existing model.

*next : VxR -. V

*out : Vx R - D

The idea here is that next(vr) denotes the next state of the syrtem when the
request r is invoked in state s, while out(s,r) denotes the result returned by
the request r in state s. The result consists of the "yes"/"no" response of
the machine. The next and out functions are implicit in the 2 notation when using
the "before" and "after" primes, bangs and query decorations.

We derive a function next

next*: V xR* -. V

(the natural extension of next to sequences of actions) by the equations

next (v,AJ = v, and4* 4

next (v,sor) = next(next *(vm)r),

where A denotes the empty sequence and ° denotes concatenation.

We define the functions do and result:

do: R* - V

result: R* x R -. D

by the equations

do(s) = next (v 0 .)I

result(cr) = out(do(),r).

The intuition here is that the machine starts off in the initial state v and isR*

presented with a sequence a e P of actions. This causes the machine to
progress through a series of states, eventually reaching the state do(s). At
that point, the request r is performed and receives the result result(sc,r).
Observe that this result is merely the final output seen when the system
performs r in state do(s); it is not the sequence of intermediate results seen
during execution of the action sequence a.

A state v e V is said to be reachable if there exists an action sequence x e R*
such that v = do(s).
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In order for a certain request r to be said to cause information to flow to
subsequent requests, it must surely be the case that results subsequently
seen are different from those that would have been seen if the request
concerned had not been present. That is, the request r may be said to convey
information or interfere with q, if

result(c .ro13,q) x result(O'.P~q).

This is the basis of the non-interference identification of security as the
requirement that information may not flou.4 from certain (classes of) requestors
to others. We say that there is no information flow from one requestor to
another, or that the first is non-interfering with the second, if the results
seen by the second requestor are completely unaffected by the presence or
absence of operations involving the first. We now state this notion formally:

Definition 1: For uv e E and o an action sequence in R*, define o/u to be the
subsequence of ix formed by deleting all requests involving u, that is:

A/u = A,

OC/u if u e r.requestors,
(o.r) )/u =

cx/uor otherwise.

A requestor u is noninterferins with requestor v if

result(oc,q) = result(oc/u,q), U e R*and qeR I q.requestor = v.

A security policy is a relation j on the set of entities E with the interpretation

that u b v indicates that requestor u is required to be non-interfering with v.

A system M is secure with respect to a policy j if u is noninterferinS with v
whenever u v. We will generally say simply M is secure in contexts where the
relation (> is understood.

We use ,4 to denote the complement of >. That is

- = Ex E\2

where \ denotes set difference. We use -, rather than 4 whenever it is more

convenient so to do.

A policy 1 is said to be closed if its complement -4 is transitive. 0

For technical reasons closed policies are required. (Rushby8S] now proceeds to
show that this is adequate for MlLS policies end indeed that all closed policies
are MLS. His definition of MLS is that of Feiertag and is defined in the next
definition. We depart at this point with a definition of MLS based on state
dependent levels.

Definition 21 Let L be a set of security labels with a partial ordering 5 and let
class : E - L be a state dependent function which assigns a variable security
label to each entity. (The interpretation of class(u) 9 class(v) is that
information is permitted to flow from u to v. ) Then the
multilevel security (MLS) policy is:

u $.>v iff (v .class(u) 5 v .class(v))
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That is, u must be non-interfering with v from state v0 if information is not
allowed to flow from u to v in the initial state. Equivalently,

u -4 v iff v .class(u) 5 v .class(v) (1)

That is u may interfere with v from state v0 if information is permitted to flow
from u to v in the initial state.

An arbitrary policy given by the relation 4 on E is said to be an MLS-type policy
if a label set L with partial ordering 5 and a function class: E -4 L can be
found such that (1) holds. 0

Clearly we have:

The above variation of the definition does not effect the remaining development
and at this point we return to the (RushbySS] development.

Theorem 3: All MLS-type policies are closed.

Proof: Obvious. 0

The converse is also true.

Theorem 4: All closed policies are MLS-type policies.

Proof: Let ?(4 be a closed security policy and -\> its complement. Define a
further relation o on E by

u v = u -4 v and v .. u.

Recall that -4 is reflexive and that, by definition - is transitive if j(> is
closed. It is easy to verify that o is an equivalence relation.

We identify a label set L with the equivalence classes of o and use [u] to
denote the equivalence class of user u under -. We define a relation _ on L as
follows:

[ul : [v) if 3 users x e (u] and y e [v] such that x -\ y.

It is easy to see that : is a partial order on L (ie it is reflexive, transitive
and antisymmetric). Finally, we define the function class: E - L by

class(u) = [u)

It is then easy to verify that

u 4v iff class(u) 5 class(v).

It follows that ,) is an MLS-type policy. 0

In order to verify the security of a system, we suppose that for each state of
the system and for each user it is possible to abstract a "view" of the state
"as seen by" the user concerned. The verification technique will be ti prove
that each user's view of the system is unaffected by the actions of users who
are required to be non-interfering with him. "Views" cannot be constructed
arbitrarily, however, a notion of "internal consistency" is required.
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Definition S: For each entity u e E, let V be a set of "private states", and letu

abstract be a function
u

abstract : V --+ Vu u

For notational convenience, we denote abstract (v) by v~ul.u

A system is internally consistent if, U reachable states s,t E V and r e R,

s[r.requestorJ = t[r.requestor] -* out(s,r) = out(t,r).

n

Thus if two states s and t "look the same" to a user, he will always obtain
identical results when the same operation is performed to each state, provided

M is internally consistent.

The definition of security requires that outputs seen by one user are
unaffected by operations performed by those other users who are required to
be noninterfereing with him. The next result shows that, for an internally
consistent system, security is achieved if the view of a user is unaffected by
operations performed by other noninterferins users.

Lemma B: Let j.> be a policy and M an internally consistent machine such that, b

u,v E E, and o aR*,

u $ ,v .* do(O[vi = do(t/u)[v]. J
Then M is secure with respect to iQ.

Proof: Since M is internall consistent,

U r e R I r.requestor = v

do N)[vI = doa/u)[v]
-4

out(do(o),r) = out(do(a/u),r)

By definition, out(do(oc),r) = result(,r) and out(do a/u),r) = result(oc/u,r).

Hence

do(a)(vJ = dot(/u)[v] I resulttc,r) = result(w/u,r)

and the lemma follows directly. 0

Definition 1 and Lemma B are expressed in terms of the behaviour of the system
when confronted by action sequences of arbitrary length. The following theorem
establishes conditions on individual state transitions that are sufficient to
guarantee security. This result is a special case of the "Unwinding Theorem" of
[GougenBil].
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Theorem 7: Unwindin9 Theorem. Let M be an internally consistent system such

that V uv,w e E, s,t e V and r,q e R I r.requestor = u A q.requestor = w:

1) u 1v -* next(s,r)(v] = s~v], and

2) s[u] = t u I-* next(s,q)[uI = next(tq)[u],

Then M is secure with respect to ?(>.

Proof: We show that the conditions of the theorem imply

u$ v." do([)[v] =do(i/u) [v]

The result then follows from the previous lemma. The proof is by induction on
the length of the action sequence o. The basis is the case c = A and is trivial.
For the inductive step, suppose the theorem true whenever o is of length n and

consider the action sequence e = 1ox and P e R is an action sequence of length
n. We need to prove

u I, v .o do[Iorr][v] = do[1p.xlu)[Iv]

We consider two cases according to the identity of the requestor of x.

Case 1: x.requestor = u. Here x/u = A and so we need
u 14 v -. do(B.r)[v] = do(/u3[v].

Now the first condition in the statement of the theorem gives
u ?(> v,.* next~do[p],r)[Iv] = do(p)[Iv]

and by definition we also have do(p-r) = next(do(p) ,r), Hence
u 4v -. do(O-r)[v] = do(1)[v].

The inductive hypothesis gives
u -/> v * do() [v] = do[(a/u) [v],

and so we deduce
u Y4 v - do([or)[v] = do(p/u)[v]

as required.

Case 2: x.requestor * u. Here x/u = x and so we need
u 4v .* do(p.x) [v] = do(/u.x)Iv].

Now the inductive hypothesis gives
u $,, v -,. do(pIv] = do(p/u)[v]

and the seccnd condition in the statement of the theorem gives
do(O) v] = doC1/u ,) -o next(do([a),x) = next(do(/u],x)[v]

whence the result follows.
n

The Unwinding Theorem is a powerful result. We now prove that unwinding is. in a
certain sense, complete: for any secure system, we can find a collection of
private states and abstraction functions that satisfy the conditions of
Definition 5 and Theorem 7.

Theorem B: If 11 is a secure system, then for each requestor u e E, a set of
private states V and an abstraction function

abstractu: uV -* u
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can be found such that for all reachable states s,t e V, u,v,w e E and rq e R

I r.requestor = u A q.requestor =w:

1) slul = t~u] -* out(s,r) = out(t,r),

2) u .v -* next(s,r)EvJ =s[v],

3) s[u] = t[u] . next(s,q)[u] = next(t,q)[u).

Proof: We use the following construction. First, for u e E define a relation =

R*
over R by

- a -result(owl,r) = result(pop,r) U i e R*.

It is easy to see that - is an equivalence relation. Let [a] denote the
u u

equivalence class of - to which the action sequence & e R* belongs. We define

the private states of user u to be this set of equivalence classes and we
define the corresponding abstraction function by

do(C)[u] a [(X)
u

It is routine to verify that this construction is well-defined and that it
satisfies the conditions in the conclusion of the Theorem. 0

Theorem 8 allows us to state the following theorem.

Theorem 9: If ?(> is the MLS policy of definition Z, and if our model is secure
with respect to > then we can find an abstraction function such that for all
reachable states s,t e V, u,v,w a E and rq e R I r.requestor = u A

q.requestor m w:

1) su) = t~u] ,- out(sr) = out(t,r),

2) u -, v -= next(s,r) [vI = sv),

3) slu) = t~ul -* next(sq)[u] = next(t,q)[u.

Proof: Define the abstraction function and show that the rules of the model
imply the conditions of the Theorem.

To capture the notion of two states looking the same to a requestor the obvious
first step is to say that everything it is permitted to see in each state is the
same

V u e E, s,t e V
C e : dam s I s. Class(e) I s. lass(u) } C s

= {e : dam t I t. Class(e) I£t. Class(u) } 4 t
dom s = doa t

While this is obviously necessary is it sufficient? To capture fully the first
condition of the theorem it must also be the case that the modification options
of the entity are the same in both states.
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For entities below the users classification modification is not an option because
of Confidentialityl. For entities at and above the users level modification is
subject to the constraints of Separation ofDuty which relates Role, Trust and
Conflict controls. The set of entities at or below the users level and their
Role, Trust and Conflict controls will be identical because of the observation
constraint above. For entities above the users level the set of modifiable
entities is controlled by Conflict which must therefore also be constrained to
be identical. Trust and Role, although involved in Separation of Duty, concern
only the requestors, which by Confidentialityl and the constraints of W that
requestors are members of both observers and observed, ensures that
requestors must be at the level of the user. Thus Trust and Role of higher
fellow requestors cannot be probed and no additional contraints are required on
Trust or Role. Thus we require in addition the following constraint:

U u e E, s,t e V
dom(s.Conflict C {s.Role(u)}) a s.Conflict

= dom(t.Conflict Cb {t.Role(u)}) a t.Conflict

The Class of higher entities cannot be probed in this way because Confidentiality
overrides all mechanisms which a requestor could use. Thus the degree to which
another entity is higher, or, whether it is even classified, is invisible to the
requestor.

Thus our abstraction function, that an entities view of states is identical (EVI)
is as follows:

EIu : E

s,t : U

dam s = dam t (a)

{ e : dom s I s.Class(e) I s.Class(u) } 4 s
= { e : dam t I t.Class(e) 5 t.Class(u) } 4 t (b)

dom(s.Conflict {s. Role(u)}) a s.Conflict
= dom(t.Conflict r> {t.Role(u)}) a t.Conflict cc)

The proof of this is quite tedious and involes showing that for each of the
classes of transitions (rules) which we have defined for the model the above
abstraction function implies each of the three aspects of the unwound policy

1) slu] = t[u] .-* out(s,r) = out(t,r),

2) u 0,v -o next(s,r)tv] = s[v],

3) stu] = t(u] -* next(s,q)[uJ = next(t,q)[u].

The rules have conditions in them designed to fulfill the axioms and it is the
fact that unchanged they also uphold this orthoganal view which provides us
with confidence in their correctness.
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The Chin~e Attribute Rule

ChangeAttribute

FW

d! = "yes" (1)

V' I v (2)

dom v' = dom v (3)

(observers U r?.observed) n dom v c dom v.Class
(observers U r?.observed) n dam v' Q dom v'.Class
GLB v.Class( modified ) k LUB v.Class( r?.observed (S)

(v.Class t v'.Class 0 0) v(v. Conflict t v'.Conflict x 0) (6)

U r : r?.requestors . dont.signal e v.Trust({r})

U e : modified_controls
v.Role( faithful-requestors ) 2 v.Conflictl {e} (7)

where
faithful requestors a{ r : r?.requestors I

(r.faithful) e v.Trust (

The First Unwound Condition

Strategy is to show that all the preconditions of rule which affect the output
are implied to be identical by EVI

State dependent conditions of ChangeAttribute which might affect output of
Chansettribute are:

') (observers U r?.observed) n dom v c dom v.Class
5) GLB v.Class( modified ) k LUB v.Classt r?.observed I

EVI does not distinguish between entities which are not classified and those
which are classified higher when defining the private view of u (b). As the
conditions which discriminate these two aspects of Class are conjoined in
ChanSettribute the rule as a whole cannot distinguish differences in the whole
Class relation which are not distinguished by EVI.

6) v.Trust( requestors ) and dont_.signal

ChanseAttribute requires that all requestors which cooperate in a transition
which modifies an entities class or conflict must have the dontsignal trust
attribute(S). Because of (5) and the definition of W all requestors are the
same level as u whereby (b) of EVI requires that Trust, amongst others, is
equal for such entities.
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7) v.Rolef requestors I Q v.Conflict( {e} I
8) v.Trust( requestors ) and faithful

ChanSeAttribute requires that all requestors which cooperate to modify an
entities controls posses faithful in Trust (8) and their combined roles through
Role are a superset of roles through Conflict of the modified entity (7).
Because of (S) all requestors are at the same level as u whence via (b) Role
and Trust are the same for all requestors where this would matter. The
Conflicts of all entities which u can modify by virtue of (S) Cie where it
matters) are the same via (c) and those which it can't modify because of (S)
are the same via (b).

Thus ChanSeAttribute supports the first condition of the unwound policy.

The . !cond Unwound Condition

Strategy is to show that all modifications that can be made by ChangeAttribute
resulting from requestors including a higher requestor are not visible via EVI to
requestors involving a lower requestor.

This proof will fail for transitions which invoke the dontsignal trust
attribute, and are thus defined to not be "real" failures of the
model.

The def inition of u A v is , Nv.Class(u) s v. Class(v).

We consider each case of EVI in turn.

Case a) Requires that dom s = dom t.

This is trivially satisf ied by (3) from the definition of Changettribute.

Case b) Requires that { e : d o s j s.Class(e) S s.Class(v) } 4 s
-{ e : dom t I t.Class(e) S5 t.Class(v) } 4 t

For this we need a little lemma.

Lemma:

U x,yz : CLASS

-dCx S y) ^ (x T.z) ( 'z S>)

Proof: ("For those who have the mathematical ability of a concussed bee".PJM)

By definition of =-
-(-dx !5 y) A (X S Z)) v (z S y)

By Detlorgan
'(-dx Sy) A (x S z) A (Z S Y))

By Transitivity of S
-'(-dX S Y) A (X S>'))

Which is identically true. 0

i) From definition of 14
u 1 v - (s. Classu) S s. Class(v))
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(ii) From definition of Chanettribute (5)
GLB s.Class( modified ) 2 LUB s.Class( r?.observed 3

(iii) From definition of W
u e r?.observed

(iv) From (ii) and (iii) and definition of LUB
GLB s.Classl modified )Zs.Class(u)

(v) From definition of GLB and (iv)
U m e modified • s.Class(m) 2 s.Class(u)

(vi) From (i) and (v) and lemma we have
-(s. Class(m) S s. Class(v))

(vii) From (vi)
modified n { e : dam s I s.Class(e) S s.Class(v) } = {}

(viii) If t.Class = s.Class
modified n { e : dam t I t.Class(e) S t.Class(v) } = {}

(ix) From definition of modified in W and (vii) and (viii)
follows (b)

(x) From (6)

s.Class e t.Class _i, U r : r?.requestors . dontmsignal e v.Trust({r}]

Thus ChangeAttribute supports (b) within the limits we have defined.

Case c) Requires that dom(s.Conflict r> {s.Role(v)}) < smConflict
= dom(t.Conflict E> {t.Role(v) ) 4 t.Conflict.

This is trivially supported by (6) from the definition of ChangeAttribute which
ensures that if Conflict is modified then requestors possess dont signal.

Thus ChangeAttribute supports (c) within the limits we have defined.

Thus ChanSeAttribute supports the second condition of the unwound policy within

the limits we have defined.

The Third Unwound Condition

If w and u are such that , (s. Class(w) S s. Class(u)) then proof is same as for
the second condition applied in turn to showing that s[u] = next(s,q)[u] and
t[u] = next(tq)[u] thus providing a commutative square.

slu] t[ul]

nextis,q)(u] ionextkq)[u]

3S
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If w and u are such that s.Class(w) S s.Class(u) then next(s,q)[u)
next(tq)[u] implies there are transitions permitted/not permitted to w in s
which are not so permitted/not permitted in t. This is equivalent to violating the
first condition of the unwound theorem.

Thus ChangeAttribute supports the third condition of the unwound theorem.

Thus ChangeAttribute supports the Unwound Theorem under EVI.

The Entity Gain Rule

Ent ityGain
W

d! "yes" (1)
v' v (2)

dam (v' - v) n dam v = 0 (3)

rns v' = rng v (4)

(observers U r?.observed) n dam v r dom v.Class

(observers tj r?.observed) n dom v' Q dom v'.Class (5)

GLB v.Class( modified I k LUB v.ClassT r?.observed 3 (6)
U r : r?.requestors . (7)

dont_signal e v.Trust( {r} 

dam v'\ dam v x
creator e v.Trust( r?.requestors ) (B)

The First U iwound Condition

Strategy is to show that all the preconditions of rule which affect the output
are implied to be identical by EVI

State dependent conditions of EntityGain which might affect output of EntitGain
are:

5) (observers U r?.observed) n dom v r dom v.Class
6) GLB v.Class( modified I ;! LUB v.Class( r?.observed I

EVI does not distinguish between entities which =re not classified and those
which are classified higher when defining the private view of u (b). As the
conditions which discriminate th,-ie two aspects of Class are conjoined in
EntityGain the rule as a whole cannot distinguish differences in the whole Class
relation which are not distinguished by EVI.

7) dcntsignal e v.Trust( requestors

EntityGain requires that all requestors which cooperate in the transit on rust
have the dontsignal trust attribute. Beceuse of (6) and the definition of W all
requestors are the same level as u whereby (b) of EVI requires that Trust,
amongst others, is equal for such entities.
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8) creator e v.Trust( r7.requestors I

Similarly, EntityGain requires that at least one requestor has the appropriate
trust, creator, for assigning Class, Trust, Role and Conflict attributes to the
new entities. Because of (6) and the definition of W all requestors are the
same level as u whereby (b) of EVI requires that Trust, amongst others, is
equal for such entities.

Thus EntityGain supports the first condition of the unwound theorem.

The Second Unwound Condition

Strategy is to show that all modifications that can be made by EntityGain
resulting from requestors including a higher requestor are not visible via EVI to
requestors involving a lower requestor.

We consider each case of EVI in turn.

Case a) Requires that dam s = dam t.

From (3) in the definition of EntityGain we can see that this fails but as (7)
requires all requestors possess dontsignal EntityGain supports a within the
limitations we have defined.

Case b) Requires that { e : dam s I s.Class(e) : s.Class(v) } 4 s
= { e : dam t I t.Class(e) 5 t.Class(v) } 4 t.

The proof for this follows that of ChangeAttribute upto step x). At this point
for EntityGain we appeal to 7) of EntityGain that all requestors are
unconditionally trusted not to signal. However, the original motivation for this
constraint was the Confidentiality 2 axiom that entities had been created. Thus
we should also appeal to the fact that for this rule if Class is modified (in
practice a certainty) it will only be for new entities, (3) , and the requestors
are trusted to add to Class by virtue of (8). For our defined limitations of the
non-interference proof it is the former reason which formally saves us. This
shift in emphasis should be noted when carrying out the real world
interpretation of dont_signal and newclass.

Thus EntityGain supports (6) within the limits we have defined.

Case c) Requires that dom(s.Conflict C, {s.Role(v)}) a s.Conflict
= dom(t.Conflict b {t.Role(v)}) 40 t.Conflict

This is trivially supported by (7) which ensures that the requestors
unconditionally possess dont_signal. As above however we note that this
involves a shift of emphasis from the original motivation where (3) and (11)
ensured that only "additions" to Conflict for the newly created entities are
made in a trustworthy manner.

Thus EntityGain supports (c) within the limits we have defined.

Thus EntityGain supports the second condition of the unwound policy within the
limits we have defined.
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The Third Unwound Condition

The proof of this proceeds as for Change Attribute.

Thus EntityGain supports the third condition of the unwound thiarem.

Thus EntityGain supports the unwound theorem under EVI.

The Entity Loss Rule

Ent ityLoss
W

d!= "yes" (1)
V' v (2)

dom(v v' ) n dom v' = 0 (3)

rng v' = rng v (4)

(observers U r?.observed) n dam v a dom v.Class
(observers U r?.observed) n dam v' 9 dom v'.Class

GLB v.Class( modified ) 2 LUB v.ClassE r?.observed 1 (6)

0 r : r?.requestors ° dont_signal e v.Trust({r}I (7)

U e : modifiedcontrols .
v.Role( faithful requestors I z v.Conflictl {e} 1 (8)

where
faithful-requestors -{ r : r?.requestors I

(r~faithful) e v.Trust } (9)

The First Unwound Condition

Strategy is to show that all the preconditions of rule which affect the output
are implied to be identical by EVI

State dependent conditions of EntityGain which might affect output of EntityLoss
are:

5) (observers U r?.observed) n dam v c dom v.Class
6) GLB v.Class( modified ) a LUB v.Class( r?.observed

EVI does not distinguish between entities which are not classified and those
which are classified higher when defining the private view of u (b). As the
conditions which discriminate these two aspects of Class are conjoined in
EntityLoss the rule as a whole cannot distinguish differences in the whole Class
relation which are not distinguished by EVI.

7) dont_.signal e v.Trust( requestors I

EntityLoss requires that all requestors which cooperate in the transition must
have the dontsignal trust attribute. Because of (6) and the definition of W all
requestors are the same level as u whereby (b) of EVI requires that Trust,
amongst others, is equal for such entities.
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B) v.Role( requestors I ; v.Conflict( {e} 1

9) v.Trust( requestors and faithful

EntityLoss requires that all requestors which cooperate to modify an entities
controls posses faithful in Trust (9) and their combined roles through Role are

a superset of roles through Conflict of t s modified entity (B). Because of (S)
all requestors are at the same level as u whence "is 'b) Role and Trust are
the same for all requestors where this would matter. The Conflicts of all

entities which u can modify by virtue of (6) (ie where it matters) are the same
via (c) and those which it can't modify because of (6) are the same via (b).

Thus EntityLoss supports the first condition of the unwound theorem.

The Second Unwound Condition

Strategy is to show that all modifications that can be made by EntityLoss
resulting from requestors including a higher requestor are not visible via EVI to
requestors involving a lower requestor.

We consider each case of EVI in turn.

Case a) Requires that dom s = dom t.

From (3) in the definition of EntityLoss we can see that this fails but as (7)
requires all requestors possess dontsignal EntityGain supports a) within the
limitations we have defined.

Case b) Requires that { e : doa s I s.Class(e) : s.Class(v) } C s
= { e : dam t I t.Class(e) 5 t.Class(v) } C t.

The proof for this follows that of ChangeAttribute upto step x). At this point
for EntityLoss we appeal to 7) of EntityLoss that all requestors are
unconditionally trusted not to signal.

Thus EntityGain supports (b) within the limits we have defined.

Case c) Requires that dom(s.Conflict D {s.Role(v)}) 4 s.Conflict
= dom(t.Conflict D {t.Role(v)}) G t.Conflict

This is trivially supported by (7) which ensures that the requestors
unconditionally possess dont signal.

Thus EntityLoss supports (c) within the limits we have defined.

Thus EntityLoss supports the second condition of the unwound policy within the
limits we have defined.

The Third Unwound Condition

The proof of this proceeds as for ChangeAttribute.

Thus EntityLoss supports the third condition of the unwound theorem.

Thus EntityLoss supports the unwound theorem under EVI.

Thus EntityGain, EntityLoss and ChangeAttribute support the unwound theorem
under the abstraction function EVI. Hence the rules of our model support
Theorem 9 and our model is therefore Multi-Level Secure. 0
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The Safe Entity Gain Rule

This approach also allows us to go beyond what we can do with the axioms, an
example of [GuttmanB?). We can formulate a second variant of the EntityGain
rule whereby instead of appealing t_ the trusted status of the reouestors we
constrain the rule to create "safe" controls on the new entities. This rule
forms then the basis of a transition which can be used by "untrusted"
requestors.

SafeEnt ityGain

W

V' 2 V (1)

dom(v' - v) n dam v = 0 (2)

rn9 v' rn9 v (3)

(observers U r?.observed) n dam v c dom v.Class
(observers U r?.observed) n dom v' c dom v'.Class
GLB v'.Class( observers ) Z LUB v.ClassE r?.observed 1 (S)
U r : r?.requestors • dont siSnal e v.TrustE {r} 1 (6)
v'.Trust v.Trust (7)
U o : E I o e dom(v' -v)

v'.Role ( o ) e v.Role r?.requestors 1 (8)

GLB v'.Class ( v'.Role-1 (v'.Conflict ( o (9)
Z LUB v.Class ( r?.observed I

# v'.Conflict( {o} ) a 2

As the rule includes a covering constraint of Confidentialityl, (S) (1)g2), it
supports this axiom.

As the preconditions of the rule imply the first disjunct of Confidentiality2 the
modified predicate is included in the rule thereby trivially satisfying
Confidentiality2.

The preconditions of this rule, (1) (2), mean that no entities are modified
therefore separation of duty is trivially true.

The preconditions of the rule imply that TrustedCreation applies. As the rule
doesn't include the predicates of that axiom it obviously does not support that
axiom. Instead, this rule mandates a safe form for each control.

It is in establishing that these well intentioned, but formally arbitrary,
constraints are sufficient that the non-interference proof comes to the fore.

The First Unwound Condition

Strategy is to show that all the preconditions of rule which affect the output
are implied to be identical by EVI

State dependent conditions of SafeEntityGain which might affect output of
SafeEntityGain are:
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4) (observers U r?.observed) n dam v r dom v.Class

5*) GLB v.Class( modified 1 t LUB v.Class( r?.observed I

5 is derived from 1, 2, S, & W which together imply it.

EVI does not distinguish between entities which are not classified and those
which are classified higher when defining the private view of u (b). As the
conditions which discriminate these two aspects of Class are conjoined in
SafeEntityGain the rule as a whole cannot distinguish differences in the whole
Class relation which are not distinguished by EVI.

6) v.Trust( requestors ) and dontsignal

SafeEntityGain requires that all requestors which cooperate in the transition
must have the dont_signal trust attribute (6). Because of (S) and the definition
of W all requestors are the same level as u whereby (b) of EVI requires that
Trust, amongst others, is equal for such entities.

Thus SafeEntityGain supports the first condition of the unwound theorem.

The Second Unwound Condition

Strategy is to show that all modifications that can be made by SafeEntityGain
resulting from requestors including a higher requestor are not visible via EVI to
requestors involving a lower requestor.

We consider each case of EVI in turn.

Case a) Requires that dam s = dom t.

This is supported only inasmuch that (6) means that the failure is within the
limits which we have defined.

Case b) Requires that { e : dam s I s.Class(e) S5 s.Class(v) } C s
= { e : dom t I t.Class(e) S5 t.Class(v) } 4 t

This proceeds as normal except that Sw is substituted for the usual GLB
v.Class of modified whence via the definition of observers as a superset of
modified and the fact that 1 and Z ensure that v' .Class of modified is equal to
v.Class of modified the proof still works.

Case c) Requires that dom(s.Conflict D {s.Role(v)}) -a s.Conflict
= dom(t.Conflict D {t.Role(v))) C t.Conflict.

This is satisfied by (9) which clearly is not the sort of rule condition which one
would intuitively leap too when building a safe axiom busting rule. Note that this
variant of the rule could be used in ChangeAttribute instead of appealing to
dont_signal of Confidentiality 2.
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Thus SafeEntityGain supports the second condition of the unwound theorem.

The Third Unwound Condition

If w and u are such that -(s.Class(w) S s.Class(u)) then proof is same as for
the second condition applied in turn to showin9 that slu] = nextCs,q)[u3 and
tfu] = nextCt,q)[u] thus providing a commutative square.

s[u] btfu]

next s,q)Eu s.next (t, q) [u]

If w and u are such that s.Class(w) S s.Class(u) then next(s,q)[u] ;
next(tq)[u] implies there are transitions permitted/not permitted to w in s
which are not so permitted/not permitted in t. This is equivalent to violating the
first condition of the unwound theorem.

Thus SafeEntityGain supports the third condition of the unwound theorem.

Thus SafeEntityGain supports the unwound theorem under EVI.

Thus our model augmented with the SafeEntityain rule also supports the
unwound theorem under EVI, supports therefore Theorem 9 and is therefore also
Multi-Level Secure.
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4. THE SMITE ARCHITECTURE

This section examines the fundamental mechanisms required to implement the
Security Policy Model. It then introduces the basic architecture of the SMITE
multi-processor by first describing the capability addressing nature of the

architecture, followed by the basic protection mechanisms used to provide the
discrete components of the policy model abstraction.

The Basic Requirements of the Model

The basic elements of the policy model abstraction are Entities, Attributes,
their Relationships, and the state transition Rules.

In the formal model Entities and Attributes are inscrutable elements of the
sets E and A. There is no formal sense in which an Entity or Attribute is, or
contains, data, or anything else. The only notion of change in the model are the
state Relations.

We are interpreting the Relations as representing the notion of "access" to
Attributes by an Entity. Our interpretation of the model has no concern for what
a notion of "access" means except that the semantics of access never changes
in the face of spatial or temporal multiple accesses. In real terms this implies
that the only important notion of access which we wish to capture is that of
being able to "name", "address" or "reference". Thus Entities cannot conceive
of accessing Attributes which are not mapped from them by a state Relation.
The model assumes that all Entites can "name", "address", "reference" all
other Entities.

The model representation of a Request is that the "requesting entities" present
a subset of the Entities "which they can name", "to which they have access".
It is the transition Rule which observes, changes and modifies the state
Relations in the light of the set of the offered and/or requesting Entities and
the Attributes associated with them by the state Relations.

Viewed in this way Entities and Attributes are simply immutable things which can
be named and used to index in and out of centrally stored state Relations which
are visible only to the transition Rules.

An alternative interpretation is to view Entities as "containing" the names, or
references, to the Attributes in their component of a state Relation. In other
words the state Relations are the sum of the contents of Entities. This view is
dependent on a number of assumptions in order to provide an interpretation
consistent with the model.

Firstly, Attributes must have protected contents, such as a read-only memory
segment or disc file containing textual data etc, because the model assumes
that Attributes are immutable and convey no information by means of a change
of value during or between state changes.

Secondly, the addressability of Attributes is strictly controlled in that only
entities which have obtained the attribute addres- in a valid state transition
can address an attribute. Thus an entity must not be able to forge the address
of arbitrary attributes.

3
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Entities are represented by objects whose contents, references to Attributes,
can be protected from observation and modification by other Entities but not by
transition Rules. Note, that it is the contents of Entities which must be
protected, the model makes no assumptions about restrictions on the
addressability of Entities. In practice, having implemented the protection of
both contents and address for attributes the same mechanism will be used for
entities. While this implementation restriction appears useful, no use of it is
made in the model.

These requirements can be simply interpreted as the requirement for a two
state machine and the model is therefore a generic security model which can be
implemented with any conventional Trusted Computer Base technology.

The architecture proposed for implementing the model in the SMITE project is a
capability addressing processor. Experienced readers may wonder why, having
shown that a conventional TCB approach is necessary and sufficient for the
models implementation, we are proposing a capability processor. Capability
architectures have a bad reputation for implementing secure systems despite
the intuitively attractive features which appear to make them ideal for this
purpose: fine grain, flexible, hardware enforced protection. We believe that
this reputation is undeserved.

Our conjecture is that capability machines have failed in the past because of
the inappropriateness of the security policy models which they have attempted
to implement. In other words we regard the limiting factor as the models that
they have implemented rather than the basic architecture. We use the
capability protection to provide the attribute address and contents protection.
This is also used for protecting the contents of entities with the result that
entity addressing is also constrained by the capability implementation in a
manner not required by the model. It is in attempting to model a fine grained
capability architecture with policy enforcement at this level of access to
entities which has driven past efforts into failure because of the complexity of
capability distribution and revocation control. Our policy is not enforced at this
level and is we believe the reason why SMITE will succeed where past efforts
have failed.

In pursuing this argument it is important that we avoid confusion between the
SMITE meaning of terms, such as capability protection, and the complex
concepts which a reader with some knowledge of previous capability
architectures may possess. In order to achieve this we will therefore describe
the very simple notions that we use in SMITE before showing its correspondence
to the model.

The SMITE Basic Architecture

Capability addressing is simply the concept that areas of memory are
addressed by a pointer. The difference between a capability and say a
conventional base or index addressing mode is that a word representing a
capability is fundamentally distinguished from a word representing a scalar
number. Thus in a conventional architecture a word representing a number can be
used in arithmetic instructions by loading it into "accumulator" registers or it
may be used in address calculation of memory store and fetch instructions by
loading it into a "base" or "index" register.
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In a capability architecture the resisters and words in store used to address
store are typed differently from normal scalar registers and words and the
different roles are enforced by the various instructions of the instruction set.
This "typing" of words may be achieved by additonal "hidden" tag bits or by
segregation of the store, this being an implementation detail. Capabilities also
enforce the bounds of the area of memory addressed, by a size or range field
within the capability, and thus represent a stronger addressing mode than the
conventional base or index register alone where the memory to be addressed is
limited solely by the size of the offset register.

The use of capabilities, of a base-range form, as the only mode of addressing
and the fundamental enforcement of the distinction between capability and
scalar data is the only notion of protection which SMITE implies by the use of
capability protection. A capability cannot be forged or guessed by manipulation
of scalar data, a scalar word with the same bit pattern as a capability word
are not the same, by virtue of the address of the word or by the hidden tag bit
in a segregated or tagged architecture respectively.

There are no instructions to "generate" a capability per se in a capability
machine, instead instructions which generate new objects generate new unique
capabilities to address them. Capabilities can be freely copied to enable
sharing of objects.

Thus far SMITE and previous capability approaches share common concepts. The
differences between SMITE and other capability architectures arises from the
degree and method of use of the additional mechanisms which are built onto the
basic capability pointer and protection idea. A generic development of these
mechanisms and the contrasting uses of SMITE and conventional architectures is
developed below simply to provide the necessary volcabulary for discussing the
SMITE implementation of mechanisms corresponding to constraints of the policy
model.

Words used as capabilities are essentially private data types of the machine
instruction set used in address calculation. Because of this private nature
capabilities and their instructions can be further "typed" by using "spare" bits
of the word, ie those bits not required to form a pointer. Thus bits have been
used to provide read, write, and execute access control on the store
addressed by the capability, bits have been used to control entry and exit from
"supervisor" or "privilege" states of code accessed by execute access
capabilities, and bits have been used to provide extensive typing to produce
high-level object based language processors [TynerBi]. Past efforts to turn
the access control nature of read write access capabilities into full blown
policy enforing architectures, with security labels and built in "dominates"
rules in the instruction set, have also been attempted.

SMITE uses the "extra" bits to define a number of different types of
capabilities. SMITE uses the term "block" and "block type" to denote this on
the basis that in practice a capability defines some block of store in terms of a
base and offset. Thus the instruction set is partitioned into instructions which
work on different capability types where the type defines the format and
interpretation of the contents of a block [HarroldBBb, CooperS?].
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SMITE further defines a single bit for a capability status, "Locked" or
"Unlocked". For each capability type the influence of the lock bit is defined as
a modification on the permitted modes and areas of access to the block
contents. The exact interpretation is dependent on the block/capability type.
For most types unlocked denotes unconstrained access to the entire block
contents. For some types locked functions as a modification inhibit bit, for
other types it may act as a total bar on access to the block contents. Again
the protection status conferred in the locked/unlocked state may extend to the
entire contents of the block or only to some initial number of words dependent
on the block/capability type. The instruction set creates capabilities to blocks
in the unlocked or open state and provides an instruction for locking a
capability. (NB, lock is a capability status bit not a block status). There is
not an instruction for unlocking a capability.

Given this much condensed description of the basic SMITE architecture we can
now begin to describe the interpretation of the model. Rather than present this
en masse we will develop the requirements in a tutorial fashion and
subsequently summarise the interpretation in terms of the full SMITE
architecture. The tutorial therefore presents the two block types from which
all of the basic protection mechanisms are built. For full understanding of the
supporting types the reader should refer to the instruction set specification
[Harrold88b].

The Basic Protection Mechanisms

In a capability architecture Entities and Attributes are capability addressed
blocks. The Relationship between Entities and Attributes is represented by the
capabilities of Attributes stored in Entity blocks. Only a subset of th-
capability addresses are equated to Entities and Attributes which may thus
posses capabilities to other blocks which have no corresponding element in the
policy model. These blocks can therefore be regarded as the primitive building
blocks from which Entities and Attributes are built. The policy model and its
axioms are built on the notion that Entities and Attributes are discrete,
independent items related only in the ways explicitly defined by the model.
There is thus an obligation to show a "proof of independence" on the capabilities
used to build Entities and Attributes.

The instruction set provides mechanims to manipulate capabilities to blocks and
the contents of blocks in a primitive manner which cannot be cognisant of the
policy model versus primitive permitted operations. We therefore require
"blocking" or "hiding" mechanisms to protect the policy model mappings from
arbitrary instruction set manipulation and yet to allow the application of policy
model rule transitions, which themselves can only be sequential applications of
individual instructions of the primitive instruction set stored in a capability
addressed block.

We will develop the semantics of the required hiding mechanism in a rather
tutorial fashion so as not to introduce any false connotations.

Define a block type for which the capability LOCK bit semantics are any access
versus no access. If the locked capabilities to these blocks are used for
representing Entities no one can alter the relationships or obtain copies of the
attribute capabilities contained therein. In addition if these locked capabilities
are also used to represent Attributes arbitrary modification cannot violate the
"independence" and/or immutability constraints required with respect to
primitive blocks.
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We require that a sequence of instructions which represents a state transition
rule can access the block and manipulate the block contents.

Note it is the state transition rule which must access the block not the
instigating active entity, the requestor in model terms. Thus we require that
the transition rules are represented in some way which combines not only the
constraints, ie the particular sequence of instructions, but protected access
to entities, ie only they posses the open capabilities. This representation must
exist as a capability addressed block within the system and thus the open
capability within it must be hidden from arbitrary access which could steal it
and carry out unconstrained transitions on the model relationships.

Thus the transition rule representation must have capabilities whose semantics
are that only invocation, or execution, is allowed. These blocks in SMITE are
called closures.

A closure block contains two words, a capability to a block containing scalar and
capability words, and a capability to a block containing scalars which are
interpreted as instructions.

The principle property of the closure type is that closures can only be invoked
and that the two pointers are hidden and inaccessible given only a capability to
the closure block. Conversely, the only view of the system available to a
closure when invoked is its own scalar/capability block and the parameters
supplied by the caller.

In the closure regime sensitive values, such as the open capabilities to entities
and attributes, required by code, such as the transition rules, are stored in
the scalar/capability block. This is used by the transition rule code when
invoked and is inaccessible to the caller, before, during and after the call.
The code of a closure, being software, is almost infinitely variable in the
exercise of checks that can be made upon the parameters of the call in
deciding whether to proceed with the access to the sensitive data structure.

The closure scalar/capability block and code block form a tailored protection
environment upon each call and thus serve in the same way as protection rings,
supervisor states etc of two state machines except that they are not fixed in
either form, function or number by the system but exist in a flexible,
distributed form. This approach was correctly identified in the Plessey 250
capability machine [EnlandS], where the enter capability was used to
structure system software in the same way. Sadly this effort failed primarily
for non-technical reasons though as we shall see below there are some other
aspects of the SMITE system which the System 250 lacked.

An implementation conformant with the policy model could be mounted with these
as the basic protection mechanims, a black-box block and closure containing the
open capabilities to the contents of the black-boxes. The system would
probably have to be fairly static in terms of the creation and destruction of
entities and attributes because the system structuring requirements to
instantiate closures containing capabilities to the new objects without security
compromise can become onerous with only closure and black-box protection.

The Plessey ZS carried out this instantiation at link time for the system build
using a cumbersome link language. In SMITE the interpretation of execution
access protection is fully supportive of Landin's Closure notion (LandinG4l,
which includes run time support.
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The concept of the Closure based software regime is simply that the code of a
procedure is bound to its environment, defined by its code constants and
non-local variables, to form an independent executable unit which may be
applied to parameters but more importantly can be stored and manipulated as
for any other data. Thus it may be passed as parameters and returned as
results and stored in data structures giving rise to a number of elegant
language and software properties that give the concept another name: first
class procedures, [CurrieB2].

This is simply implemented on SMITE with the closure scalar/capability block
containing the non-locals and the code block the procedure body. The ability to
mix capability and scalar data within a block is an advantage of a tagged
capability architecture such as SMITE which the segregation architecture of the
System 2SO lacked. Absence of this feature adds an extra level of complexity
when mapping a procedures non-locals, which may include scalars and
capabilities, making a simple implementation of the pure software closure
concept difficult.

Even with this high level of run-time support on SMITE the instantiation problem
for new black-boxes becomes onerous because of problems which arise from a
system containing both trusted and untrusted code. The problem is essentially
that trusted and untrusted closures cannot be differentiated thus allowing
spoofing during the distribution of the new closures. In order to mitigate this
problem the basic black-box mechanism is extended to a notion of typed
objects.

Instead of instantiating a set of transition rule representations for access to
each instance of black-box we provide a single set which can accept the locked
capability to a black-box as a parameter and then "open" the black box
capability within the protective domain of the closure environment. This requires
the provision of an unlock instruction to produce open copies of locked
black-boxes. In order that we don't regress to the problem of how to stop
arbitrary instruction sequences opening any black-box the unlock instruction for
black-boxes is "keyed" to some unforgeable token possed by closures which are
intended to access black-boxes. This is achieved by the following sematics for
Keyed Blocks, the SMITE name for such selectively opened black-box
capabilities.

A keyed block capability can be locked by any one but can only be unlocked by
someone who can quote the first word of the contents of the block, the "key".
This word cannot be forged, or guessed, if it is a capability for a block which is
known only to the intended closures. For the purposes of the model, this could
be a system wide unique key possed by all state transition closures and used to
lock all entities and attributes, For integrity policies, the transition rules will
naturally partition into groups of rules concerned with partitioned subsets of
entities and attributes. This is normally expressed in the model by means of
attributes for distinguishing such "types". It is relatively obvious therefore to
use the key itself as the representation of such type attributes in implementing
the model. This provides the damamge limitation notion of least privilege in the
implementation of the transition rules and emphasises the role of keyed blocks
as "typed objects".

The instantiation of the transition rules is carried out by a closure, the "type
manager", which generates a block to set a "key" and then delivers the
transition rule closures, the "type operators", with this key as a non local.
Provided that the type manager and operations never deliver the "key"
capability, or, open pointers to blocks containing the "key", as a result, the
contents of all blocks accessed by the locked capabilities are immutable and
hidden to all but the transition rules.
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This is then the sum total of the SMITE architecture requirements for
implementing the model with fine grained, flexible, hardware enforced
protection: capabilit' addressing, Open/Lock capability status, Closures,
Typed Objects.

Implementing the Model Elements

The implementation of each of the policy model elements is discussed below in r
terms of the essential behaviour requirements implied by the policy model, in
other words the constraints of the refinement proof chain.

ATTRIBUTES

The essential nature of attributes is that they are immutable, tranquil
objects. Once created there must be no primitive sense in which they can be
modified. There are no constraints other than this on the complexity of
attributes in terms of the primitive objects from which they are built.

The tranquility requirement is required so that when transition rules incorporate
attributes into entities as relationships there is no variety that can be
imparted to subsequent state transitions involving the attribute. For this
reason state transitions require an easy and reliable method to identify
primitive structures as valid candidates for use as attributes.

Implementing attributes as a read only primitive capabilities is not sufficient to
ensure tranquility because a read only capability to the root of a capability
structure does not imply that all elements within the structure are read only.
Further more there is no way to know that the subject has not retained write
capabilities to the object or its elements.

Thus we use trusted closures which create attributes by copying a primitive
capability structure into a read only copy within a type protected object. The
copy is unique, because only the creating closure can possibly have write
capabilities to it, and tranquil, because this closure will not use those
capabilities to alter the attribute and will deliver only the locked capability to
the containing typed object. It is thus labelled as tranquil which can quickly be
identified by state transition rules. As for the basic protection, the use of
many keys for typing attributes instead of a single tranquility key and
additional type information is an optional optimisation and least privilege
mechanism.

The untrusted code of active entities can obtain a read only copy of the
primitive structure inside an attribute, for use in "algorithmic manipulation"
outside of the model, by means of complimentatry trusted closures which
deliver another copy. If the attribute creating closure stores "read only"
capablities to the primitive copy in the attribute the second copy by the
complementary closure can be optimised to delivery of the read only capability.

PASSIVE ENTITIES

In terms of its primitive structure a passive entity is little different from an
attribute, a capability structure within a typed object. An entity however is
exempt from the tranquility requirement in as much as the state transition
rules will define permissable circumstances in which an entity may be modified.
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The exact choice of the appropriate capability structure within the object such
that it may fulfill the t ,,e sematics of the models state transitions but does
not allc-4 other transitions inadvertently is of critical importance to the
successful implementation of a :ecure system.

The type sematics of an entity is implementable purely with a stricture of a
vector of capabilities to attributes. For state transition/entity_"tyOes" whirh
imply a complex sematics this is obtained at the cost of complexity in the code
of the transition rules in finding attributes within the entity for the particular
transition required. It may therefore provide higher assurance by structuring
the attribute capabiliti_2s within the entity object. Great care must then be
taken however that the state transitions do not provide "visibility" of any
variety in the structure over an above the sematics of the type.

ACTIVE ENTITIES

An active entity is a closure in the worksapce chain of a launched process
block. Not all closures in the workspace chain of a launched process block are
active entities.

Within the process block is a pointer to a workspace block. The workspace block
is unique on the launching of the process and contains a pointer, in a
permanently hidden area, to the closure to be run. In the open area of the
workspace block are the locals and expression stack of the closure. A closure
may obtain pointers to the open area cf its workspace block and the non-locals
block of itself and is free to use these primitive pointers in any way it sees
f it.

Capabilities to Entities, Attributes and primitive data may be stored in any
manner within these two areas and may be manipulated by th- :losure at will.

For implementing the security policy constraints as opposed to the basic model
it is important .hat the control relations and attributes of active entities such
as Trusted, Class etc cannot be modified by the untrusted code of the entity
but only by invoked state transitions.

Thus within the process block is a pointer to a table called the "Process
Context". This table is a vector o word pairs where the first word of a pair is
considered a "name" and the second word the resolved value. If the second
word is a capability arbitrarily complex values can be resolved. If the first
word is a capability then the name cannot be fnrged. The instructions which
af f ect the table are "store pairs" and "resolve a word given a name". Storing
a value with a name that all ready exists in the table is an update.

Any closure can store a word with a new name in this table but only closures
which posses the existing name can update end/or retrieve words from this
table. Thus the control Attributes, which must not be "lost" or substituted by
the untrusted code of the active entity, are stored in this area with capability
names known only to the transition rules.
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A process is launched with an empty context table and an initial closure. This
initial closure must be a trusted closure which will effect either a Gain Entity
state transition which will label the entity, or arrange to inherit the context of
the parent process, before running the intended closure. This intended closure
is the entity and can invoke other closures resulting in a new workspace and an
inherited context. These new closures are thus not entities Lut just the code of
the entity. If the closure calls a state transition which embodies an Entity Gain
transition the new closure will be running as a new entity with a changed process
context. When this new entity exits the process context must be restored to
that of the existing entity. Thus the process context must be carried in and
restored on exit from closure invocations. This is simply acheived by caching
the process context table in the chain of workspace blocks of the process.

There are thus two methods of allocating new active entities, as subtasks in an
existing process or as parallel tasks in a new process. A subtask or a parallel
task is not necessarily a new entity. In all four cases trusted closures are
required to ensure the correct labelling in terms of the model transition which
is required.

Capabilities within an active subject will include, in addition to primitive blocks,
those to closures, attributes and other entities which can be passed as
parameters and received as results to and from closures. Closures which are
not transition rules are considered primitive and are subject to the
"independence proof" obligations.

TRANSITION RULES

Transition rules are closures which possess the appropriate keys for accessing
entities and attributes in their non-locals and implement the policy decisions in
terms of Class, Conflict, Trust etc of the calling closure (an entity) in their
code structure. They are thus "trusted" programs.

The Higher Software Structure

The discussions of the SMITE processor architecture and the implementation of
the model elements above have concentrated on the main store and processor
aspects of the system. Obviously this is not the whole, or necessarily the
most important part of the story from the top-level view of a general purpose

computer system running complex C3
, and MIS applications.

This section attempts to provide the flavour of' the higher level structure of
software which builds on these fundamental protection mechanisms in a way
which preserves the crucial security aspects while providing the necessary
flexibility for the above requirements.

In practice the structure of higher level software is that of type managers
described in the original frozen report before the model was developed.
Notwithstanding the practical problems in the implementation of this approach,
described at length in the above report, we must first show how this mechanism
can be described in terms of the mcJel.

We will consider the following procedure declarations and their intended
semantic interpretation, an example taken from the frozen report.
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CreateText: (Vec_Char,Vec_Char) -> TextFile
ReadText: TextFile -> (Vec _Char,Vec Char)
Amend_Text: (TextFileVecChars)

These are the operators for a type TextFile which represents the structuring
of vectors of characters, forming the text of a document and an identification
of a user designated the author, into a TextFile and back. Characters and
Vectors of Characters are primitive instruction set types. Amend represents
the modification of the text portion of an existing TextFile.

Create-Report: (VecCharTextFile) -> Report
ReadReport: Report -> (TextFile, VecChar) I

These are the operators for a type representing a Report which is interpreted
as a document which has been approved for release by a user representing an
authority higher than the author of the document. The constructor takes a
TextFile and the vector of characters which designate the approving user. The
selector returns a TextFile and the user identity of the Approver as a vector
of cnaracters.

These procedures can be used in sequences representing the organisation's
policy for externally releasing a document written by members of the
organisation. That is, only documents which have been approved may be
released.

report : Report

draftreport : TextFile

draftreport = CreateText ("This is a draft report" "author")

report = Create_Report( "approver",draftreport)

The most obvious implementation of this system is a hierarchical relationship of
the types Report, TextFile, and VecChar as follows.

Report 

Ttil

TextFile

Vec_Char

This in turn is most straightforwardly implemented in terms of keyed blocks as
follows.

Instances of types Report and TextFile are keyed blocks whose key is a
capability to a unique block, ReportKey and TextKey respectively. Textfile
additionally contains a vector of chars of the report text and a vector of
characters identifying the Author. Report additionally contains a capability to
an instance of TextFile and a vector of characters identifying the approver.

This can be pictured as follows where an enclosing box represents a capability
to the block named inside.

52



Report

ReportKey

pprover" I

TextFile

TextKey]

IFgthor"]

1"Vector of Chars"I

Our task is to describe this arrangement in terms of entities and attributes.

Firstly, our view of an entity as containing "names", or "references" to
attributes may be felt to lead us to identify the capability as the simplest,
most primitive representation of an entity. Thus

ffapprover" !

is an entity containing the reference to the attribute

"approver"

Following this interpretation however leads us into problems. Consider
interpreting TextFile above in this way. TextFile is an entity containing three
entities! This is not a model concept, entities contain references to attributes
not entities. Thus we cannot characterise entities and attributes in terms of
simple hardware characteristics.

Instead, we can say that the encoding of an attribute resides in memory and
that the address of this memory resides somewhere else in memory and that
this other piece of memory is an entity. The model assumes that the memory
representing the attribute cannot be arbitrarily accessed (ie its address
cannot be guessed or forged) but is accessed only by transition rules on behalf
of an entity which possesses the address of the entity. This requirement is
simply met by SMITE in that the address of the attribute is a capability and
capabilities can reside anywhere in memory. The model further assumes that
entities cannot arbitrarily acquire names and references of attributes from
other entities but can only recieve them by taking part in a state transition
involving those entities. Once again this is simply met by applying capability
protection to the area of memory representing an entity.

By this defintion TextFile is an entity containing three attributes, one which
types it as a TextFile entity, one which identifies the role identifier which
created this entity and the other, stuff related to the application, namely the
text.

However, what is now the interpretation of Report. This is an entity which
contains two attributes and the "name" /"reference" of another entity. To
understand this example we must return to the model abstraction and reexamine
the source of this example.

In terms of our model the application should be described as follows.
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Create-Text: (VecCharVecChar) -> TextFile

This is a state transition requiring only a single req.estor, whose Role will be
taken as the identity of the author, which creates a new entity. TextFile,
whose Role is that of the requestor and whose Other is some subset of the
requestors.

Read-Text: TextFile -> (Vec_Char.VecChar)

This is a state transition requiring only a single requestor, whose Role can be
anything and need not be related to the authors, which returns the Role and
Other of any entity whose type is TextFile.

AmendText: (TextFileVec_Chars)

This is a state transition requiring only a single requestor, whose Role must
match that of the TextFile, which changes the TextFile entities Other to be
some combination of the existing Other and the requestors Other.

CreateReport: (Vec_Char,VecChar,VecChar) -> Report

This is a state transition requiring two requestors, an author and an approver,
which creates an entity of type Report whose other is some subset of the
author entities' and whose Conflict is {Role(author) Role(approver)Y.

Read_Report: Report -> (Vec_Char,VecChar, Vec_Char)

This is state transition requiring one requestor, who can be any role, which
returns the other and conflict of any entity of type Report.

In this view there is absolutely no connection or interdependence between
textfiles and reports. Therefore we end up with the following straightforward
"implementations".

Report TextFile

7rover" ars

Which is exactly what the other report arrived at after considering all of the
problems if an implementation where reports are implemented with TextFile
subtypes is adopted. In the implementation of reports the two requestor
creation will have to be decomposed into two single user operations thus an
intermediate type of the form

s4



proto-Report

will be required. The resembelence of this in form to a TextFile should only
encourage us to adopt that implementation strategy if all of the other
implementation constraints required of proto-report are available in TextFile jt
without compromisins the functionality of TextFiles. Viewed in this light such a
strategy is very unlikely and represents a vast confusio- of level of
abstraction and clean top down desisn.

Thus the original question must be unasked! An entity containing an entity should
not occur in a clean application of this model.
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